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ABSTRACT

Motivation: This work aims to develop computational methods to

annotate protein structures in an automated fashion. We employ

a support vector machine (SVM) classifier to map from a given class

of structures to their corresponding structural (SCOP) or functional

(Gene Ontology) annotation. In particular, we build upon recent

work describing various kernels for protein structures, where a kernel

is a similarity function that the classifier uses to compare pairs

of structures.

Results: We describe a kernel that is derived in a straightforward

fashion from an existing structural alignment program, MAMMOTH.

We find in our benchmark experiments that this kernel significantly

out-performs a variety of other kernels, including several previously

described kernels. Furthermore, in both benchmarks, classifying

structures using MAMMOTH alone does not work as well as using an

SVM with the MAMMOTH kernel.

Availability: http://noble.gs.washington.edu/proj/3dkernel

Contact: noble@gs.washington.edu

1 INTRODUCTION

Given the large amount of effort currently devoted to

determining protein structures, the downstream problem of

determining a protein’s function from its structure is increas-

ingly important. This structure annotation problem can be

formalized as a classification task. If we assume that functional

annotations are drawn from a finite list of terms, then the task

consists of assigning a subset of these terms to a given structure

of unknown function. Note that the classification is both multi-

class (i.e. there are many terms) and multi-label (i.e. a given

structure can have more than one functional annotation).

Most of the previous research on inferring function from

structure focuses on the related problem of inferring remote

homology between pairs of structures. These methods can

be used to infer the function of a novel structure by

simple annotation transfer (Hegyi and Gerstein, 1999; Orengo

et al., 2002; Ponomarenko et al., 2005). However, when a

novel structure is homologous to multiple structures with

varying annotations, then some further analytical method

(e.g. clustering and voting) must be applied (Ponomarenko

et al., 2005). Furthermore, several analyses have demonstrated

a general mismatch between structural clusters and functional

annotations (Hegyi and Gerstein, 1999; Orengo et al., 2002).

Even highly similar structures may have quite distinct

functions, often as a result of gene duplication followed by

the evolution of new function.
A slightly more sophisticated approach to the structure

annotation problem frames it as a supervised learning task.

In this scenario, a classification algorithm learns, on the basis of

an annotated training set of structures, a mathematical function

that maps from protein structure to one or more annotation

terms. The support vector machine (SVM) classifier (Boser

et al., 1992) is a strong candidate for application to this

problem. SVMs provide state-of-the-art classification perfor-

mance in a wide variety of application domains, including many

applications in computational biology (Noble, 2004).

Recently, two research groups have applied SVMs to the

structure annotation problem (Dobson and Doig, 2005;

Borgwardt et al., 2005). Both groups analyzed benchmark

data sets based upon the top level of the enzyme classification

(EC) hierarchy. In each case, the goal of the SVM classifier is to

predict the enzyme class of a given unannotated protein

structure. The two methods differ in the way that protein

structures are represented in the SVM. Dobson and Doig use a

vector representation based upon features such as secondary

structure content, amino acid propensities, surface properties,

etc. In contrast, Borgwardt et al. use a representation based

upon walks defined on a graph of secondary structural

elements. For the EC benchmark, this random walk approach

provides better classification accuracy.
This contrast points to the central characteristic of any SVM-

based classifier: the most crucial aspect of applying the

algorithm is the selection of an appropriate representation of

the data. In the SVM literature, this choice is known as the

choice of kernel. SVMs are members of a large class of

algorithms known as kernel methods (Schölkopf and Smola,

2002), in which the data representation is accomplished via

a positive semidefinite function (the kernel function) that defines

the similarity between all pairs of objects in the data set.

Thus, in the kernel framework, the primary difference between

the classifiers built by Dobson and Doig and Borgwardt et al.

is their choice of kernel function.*The first two authors contributed equally to this work.
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In this work, we propose a simple kernel function that is

a straightforward extension of the MAMMOTH structural

alignment program (Ortiz et al., 2002). SVMs trained using

this kernel function and tested on two benchmarks—

superfamily prediction within the structural classification of

proteins (SCOP) (Murzin et al., 1995) and prediction of

gene ontology (GO) (Gene Ontology Consortium, 2000)

terms—perform significantly better than the previously

described kernels and better than several other kernels that

we tested. Furthermore, for both of these benchmarks,

using an SVM with the MAMMOTH kernel provides better

performance than using a simple MAMMOTH-based annota-

tion transfer approach.

The technique that we propose here is not specific to the

MAMMOTH algorithm: a similar kernel could be derived from

any protein structure comparison algorithm that returns a

single score for each pair of compared structures. We have

shown that, for tasks such as SCOP or GO classification, an

SVM trained using this type of kernel yields better classification

performance than the underlying structural comparison algo-

rithm alone, and better performance than SVMs trained using

kernels derived from explicit vectors of features, secondary

structure graphs, contact maps, torsion angles, amino acid

sequence or a combination of all of these features.

2 METHODS

2.1 Benchmark data sets

2.1.1 Enyzme classification benchmark For comparison with

previous work, we first tested our battery of prediction methods on a

benchmark that is derived from the EC hierarchy. This benchmark was

created by Dobson and Doig (2005). The top level of the EC hierarchy

consists of six enzyme classes, and the benchmark contains 498 PDB

structures representing these classes, plus an additional 498 PDB

structures of non-enzymes. In each class, no structure contains a

domain from the same SCOP superfamily as any other structure.

Therefore, it is not possible for domains from the same superfamily to

be present more than once within a functional class, but it is possible for

domains from the same superfamily to be present in more than one

functional class.

2.1.2 SCOP classification benchmark For the SCOP bench-

mark, we test the ability of a classifier to recognize a novel family within

a given superfamily, following the general approach of Jaakkola et al.

(1999). We extracted a non-redundant data set from SCOP using the

ASTRAL database version 1.67 (Brenner et al., 2000) with a 95%

sequence identity threshold. In a superfamily of N families, each

classifier is trained on N� 1 families and tested on the held-out family.

We require a minimum of 10 proteins for training and 10 proteins for

testing the classifier. Therefore, we eliminated any superfamily that did

not contain at least one family with 10 or more members and at least 10

additional proteins outside of that family. This filtering resulted in a

data set containing 4019 proteins from 397 families and 53 super-

families; 102 families contain at least 10 members. Note that the held-

out family design ensures low sequence similarity between domains in

the training and test sets. In the benchmark, the highest sequence

similarity between a domain in the training set and that in the test set is

48.28%. Among the 4019 domains in the SCOP benchmark, only 13

domains have BLAST hits with at least 40% sequence identity across a

train/test split.

2.1.3 GO term prediction benchmark For the GO term predic-

tion benchmark, we started with a set of 8363 PDB structures, pruned

so that no two sequences share �50% sequence identity (Li et al., 2001).

From this set, we selected structures that have GO annotations,

downloaded from http://www.ebi.ac.uk/GOA. To ensure that the GO

term annotations are not based on sequence or structure similarity

inference, we only selected the 1024 structures that are annotated with

evidence codes IDA or TAS. For each GO term T, we partitioned the

list of proteins into three sets. First, all proteins that are annotated with

T are labeled as ‘positive.’ Next, we traverse from T along all paths to

the root of the GO graph. At each GO term along this path, we look for

proteins that are assigned to that term and not to any of that term’s

children. We consider that such proteins might be properly assigned to

T, and so we label those proteins as ‘uncertain.’ Finally, all proteins that

are not on the path from T to the root are labeled as ‘negative.’ For

efficiency, we then randomly select a subset of the negative examples,

so that the ratio of negatives to positives is 3-to-1.

After this labeling procedure, we eliminated all GO terms with fewer

than 30 ‘positive’ proteins. In order to avoid redundancy, we then

selected only the most specific of the remaining GO terms, i.e. the leaf

nodes of the remaining hierarchy. This procedure yielded a total of 23

GO terms: 11 molecular function terms, eight biological process terms

and four cellular component terms.

2.2 Annotation transfer using MAMMOTH

As a baseline method, we use a one-nearest-neighbor classifier based

upon MAMMOTH. Say that we are given a test structure with

unknown SCOP superfamily or GO term annotation. We compare this

test structure to each member of the training set using MAMMOTH,

and we identify the training set structure with the smallest

MAMMOTH E-value. We then assign to the test structure the same

EC label, SCOP superfamily or GO term that is assigned to the

identified training set structure. This technique is sometimes referred to

as ‘annotation transfer’, and is commonly performed using sequence

comparison algorithms such as PSI-BLAST.

2.3 SVMs and kernel functions

We compare the MAMMOTH nearest neighbor approach with a

variety of SVM-based methods. These methods employ different kernel

functions, each of which is defined on pairs of protein structures and

focuses on different aspects of protein structure. In the following, we

describe five structure kernels: the MAMMOTH kernel, two existing

kernels (the vector kernel and the TOPS kernel) and kernels based on

contact maps and C-� torsion angles. For comparison, we also include

a kernel that is based only on sequence (the mismatch kernel) and

a kernel that combines all six of the previous kernels.

2.3.1 MAMMOTH kernel Insofar as a kernel function defines

the similarity between pairs of objects, the most natural place to begin

defining a protein structure kernel is with existing pairwise structure

comparison algorithms. Many such algorithms exist, including CE

(Shindyalov and Bourne, 1998) DALI (Holm and Sander, 1993) and

MAMMOTH (Ortiz et al., 2002). Most of these algorithms attempt to

create an alignment between two proteins and then compute a score

that reflects the alignment’s quality. In this work, we use MAMMOTH

(Ortiz et al., 2002), which is efficient and produces high quality

alignments.

Unfortunately, the alignment quality score returned by

MAMMOTH cannot be used as a kernel function directly, because

the score is not positive semidefinite (i.e. for a given set of protein

structures, an all-versus-all matrix of MAMMOTH scores will have

some negative eigenvalues). We therefore employ the so-called

‘empirical kernel map’ (Tsuda, 1999) to convert this score to a
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kernel: for a given data set of structures X ¼ x1, . . . ,xn, a structure xi is

represented as an n-dimensional vector, in which the jth entry is the

MAMMOTH score between xi and xj. The SVM then uses this vector

representation directly. This method has been used successfully in the

SVM-pairwise method of remote protein homology detection (Liao and

Noble, 2002), in which a protein is represented as a vector of log

E-values from a pairwise sequence comparison algorithm. In our

experiments, we use the log of the E-value returned by MAMMOTH.

The resulting MAMMOTH kernel incorporates information about the

alignability of a given pair of proteins.

2.3.2 Vector kernel The vector kernel is a reimplementation of

the protein structure representation employed by Dobson and Doig

(2005). Each protein is described by a vector of 55 features. The first 20

features are amino acid frequencies. The second 20 are, for each type

of amino acid, the fraction of that amino acid type’s surface area that

lies on the surface of the protein. In addition, the total number

of residues and total surface area are treated as two additional

features. Total surface area and surface area for each residue

are computed with NACCESS (http://wolf.bms.umist.ac.uk/naccess).

Another two surface-based features are the surface-area-to-volume

ratio and the fractal dimension, both computed with MSMS (Sanner

et al., 1996). Three features represent the secondary structure content of

the protein, as the fraction of residues in helix, sheet and coil,

respectively. Secondary structure is computed with Stride (Frishman

and Argos, 1995). The remaining features take into account the

presence of certain cofactors (ATP, FAD, NAD), ions (Ca, Cu, Fe, Mg)

and disulphide bonds.

All non-binary feature values v are linearly rescaled according to the

following formula: v̂ ¼ v� vminð Þ= vmax0:99 � vminð Þ, where vmin is the

minimum value of the given feature, and vmax0:99 is the 99% quantile of

the feature. This quantile-based rescaling avoids the effects of a few

outliers with very large values.

2.3.3 TOPS kernel Borgwardt et al., (2005) proposed a kernel

based on a representation of a protein structure as a graph whose nodes

are secondary structural elements and edges are defined by proximity in

the protein structure. Such a representation was first considered in the

TOPS diagrams (Westhead et al., 1999) from which our implementation

of this kernel derives its name. The labeled graph G ¼ ðV,EÞ for

a protein structure has a node v for each secondary structural element,

and an associated type, where typeðvÞ 2 fH,E,Cg, indicating whether

the secondary structure element v is a helix, strand or coil, respectively.

The graph has an edge (u, v) if the two elements u and v are consecutive

in sequence, or have two C-� atoms whose distance is less than some

threshold (10 Å).

To compare graphs representing two structures, Borgwardt et al.

define a kernel that compares equal-length walks on the two graphs.

This kernel, in turn, depends on kernels on edges and nodes in the

walks. In our implementation, these kernels take into account the

properties of the amino acids in a given secondary structural element:

average hydrophobicity [quantified by the Kyte-Doolittle index (Kyte

and Doolittle, 1982)], average hydrophilicity [quantified by the Hopp–

Woods index (Hopp and Woods, 1981)], and fraction of hydrophobic,

hydrophilic, positively charged, negatively charged and cysteine

residues. The final kernel is a sum of all kernels for walks of different

lengths. More details about this kernel are given in the online

supplement.

2.3.4 Torsion kernel The torsion kernel represents a protein

structure in terms of the torsion angles between adjacent C-� atoms.

The computation of the kernel proceeds in three steps. First, we

represent each chain of the structure by a sequence of torsion angles of

the backbone. In this representation, a torsion angle is associated with

each set of four successive C-� atoms, and is defined as the angle

between the two successive planes containing three C-� atoms. Second,

we discretize each sequence of angles. The angles (0–360) are divided

into nB bins of equal width, which we represent using letters, thereby

effectively converting the torsion angles into a string representation of

the protein backbone. In the third step, we apply a spectrum kernel

(Leslie et al., 2002) to this torsion string. The spectrum kernel represents

a string as a vector of counts of all possible substrings of a fixed length

k. This three-step procedure defines a kernel on pairs of chains, which

are extended to multi-chain structures by summing. In this work, we

compute four different torsion kernels using two values of nB (5 and 15)

and two values of k (3 and 5). Each feature vector is normalized to unit

length, and the resulting vectors are summed to create the final torsion

kernel feature vector.

2.3.5 Contact kernel The contact kernel attempts to capture

pairwise and multi-body interactions among amino acids in a protein

structure. A family of kernels is considered, with two varying

parameters: a distance threshold and the number of residues in each

interaction (nC). For each possible set of nC amino acids, the kernel

counts the number of times that those amino acids appear in an nC-way

interaction. Two residues are considered to be in contact if there exists

at least one atom from each residue within the predefined distance

threshold. However, only residue pairs with a sequence separation of at

least three amino acids are considered. More generally, a set of nC
residues are considered to participate in an nC-body interaction if every

pair of the nC residues are in contact. In the experiments reported here,

we use six different kernels: a pairwise interaction kernel with distance

thresholds of 3.5, 5 and 6.5 Å, a three-body interaction kernel with

distance thresholds of 5 and 6.5 Å and a four-body interaction kernel

with distance threshold 6.5 Å. Thus, we compute six separate feature

vectors to describe a single protein structure. Each feature vector is first

normalized to have unit length, and the six vectors are then

concatenated to form a single vector.

2.3.6 Mismatch kernel The mismatch kernel (Leslie et al., 2003)

is not a structure-based kernel, but instead looks only at the amino acid

sequence of the protein. This kernel generalizes upon the spectrum

kernel by considering shared k-length strings (k-mers), allowing for

mismatches. In this work, we use a mismatch kernel with k¼ 4 and

n¼ 1. The final mismatch spectrum vector has 204 ¼ 160 000 bins and

is normalized to unit length. The mismatch spectrum captures sequence

similarity, and has been shown to out-perform PSI-BLAST in

classifying SCOP superfamilies (Leslie et al., 2003).

2.3.7 Sum kernel Finally, we tested the ability of the SVM to

synthesize the information from all six of the previously described

kernels. We do this by summing the normalized kernels in an

unweighted fashion. This is equivalent to concatenating the corre-

sponding feature vectors, yielding a feature space whose dimensionality

is equal to the sum of the dimensions of the six individual feature

spaces.

2.3.8 Computational complexity The six basic kernels that we

tested have different computational complexities. Four of them—

vector, torsion, contact and MAMMOTH—can be implemented by

representing each structure as an explicit vector in a particular feature

space. For the vector, torsion and contact kernels, this computation is

fast: for our benchmarks, computing these vector representations and

then applying the radial basis kernel requires a few minutes to a few

hours. However, for the MAMMOTH kernel, the computation of each

MAMMOTH score requires a dynamic programming alignment

algorithm that scales as the product of the lengths of the two proteins

to be compared. In practice, the computation of the MAMMOTH

kernel matrices for our benchmarks required several CPU days. The

mismatch and TOPS kernel cannot be written as an inner product

Qiu et al.
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between explicit vector representations. However, the mismatch kernel

can be computed efficiently (i.e. in minutes on our data sets) using

a mismatch tree data structure. In contrast, computing a single TOPS

kernel value scales as the third power of the product of the number of

secondary structure elements in the proteins. Like the MAMMOTH

kernel, the TOPS kernel computations required several CPU days.

2.4 Experimental framework

All experiments were performed using PyML (http://pyml.sourceforge.

org). We trained one-versus-all classifiers for each EC label, SCOP

superfamily or GO term. For the SCOP benchmark, each method was

tested using the family-based hold-out procedure described above. For

the GO benchmark, each method was tested using 5-fold cross-

validation, repeated three times (3�5cv).

Prior to running the SVM experiments, each of the kernels described

above is first centered and normalized, and then converted to a radial

basis function kernel with width 1. For each SVM, an appropriate value

of the regularization parameter was selected from f0:1, 1, 10, 100g by

using a second level of cross-validation within the given training set.

For each prediction method, we compute two performance metrics:

the area under the ROC curve (ROC) and the area under this curve up

to the first 10% of the false positives (ROC10%). The ROC10% focuses

only on the top-ranked examples, which are of most interest in some

applications. For GO, each metric is averaged across the fifteen 3�5cv

splits.

3 RESULTS

3.1 EC benchmark

For the EC benchmark, we compared the performance of all

eight classifiers on seven one-versus-all classification tasks,

corresponding to the six enzyme classes and to the enzyme/

non-enzyme task. For this experiment, we report mean

ROC and ROC10% scores across 3�5cv. The results, shown

in Table 1 and the online supplement, show that the vector

kernel yields good performance relative to the other kernels,

with the best ROC score in five out of seven cases.

The MAMMOTH kernel does not perform best for any class.

This result is not surprising, because as previously noted,

the EC benchmark is purged so that no class contains two

members of the same SCOP superfamily. As such, any kernel

based on structural alignment is not well suited to this task.

3.2 SCOP benchmark

We compared the performance of all seven kernels on the

SCOP benchmark. The results, shown in Fig. 1A–B, clearly

show that the MAMMOTH kernel dominates all of the other

kernels. Indeed, the MAMMOTH kernel yields perfect

classification performance for approximately half of the

SCOP families in the benchmark.
By eye, it is diffult to ascertain which differences in

Fig. 1A–B are statistically significant. Therefore, we performed

a Wilcoxon signed-rank test on the ROC scores for all pairs of

kernels in our experiment. The resulting Bonferroni adjusted,

one-tailed P-values are given in Table 2. Using either metric,

the results show that the MAMMOTH kernel significantly

outperforms the sum kernel, which in turn significantly

outperforms all other methods. The TOPS, torsion, mismatch,

vector and contact kernels provide statistically indistinguish-

able performance, using either performance metric.
The MAMMOTH kernel is clearly very powerful. To test

whether the SVM adds value in this task, we also tested the

one-nearest neighbor classifier based upon the MAMMOTH

E-value. The results from this classifier are labeled

‘MAMMOTH NN’ in Figure 1A–B. Its performance is

significantly worse than the MAMMOTH SVM classifier;

hence, on this benchmark, using the SVM does indeed improve

upon using MAMMOTH alone.

3.3 GO benchmark

Among the three benchmarks, the GO benchmark is the most

diverse, spanning all three sections of the GO. The results from

experiments on this benchmark, summarized in Fig. 1C–D, are

consistent with the results on the SCOP benchmark. In general,

however, due to its small size, the GO benchmark provides less

discrimination among methods (Table 2). Using either metric,

the GO benchmark divides the methods into two groups:

the MAMMOTH, sum, mismatch and MAMMOTH nearest-

neighbor methods perform better than the contact, vector,

TOPS and torsion kernels. There is some evidence that, among

the better-performing group of methods, the MAMMOTH

nearest-neighbor is the worst: its performance is statistically

indistinguishable from that of the vector kernel by ROC score

and from the contact kernel by ROC10% score.

Table 1. EC benchmark results

ROC Hydrolase Isomerase Ligase Lyase Oxidoreductase Transferase Enz-NEnz

MAMMOTH NN 0.54� 0.02 0.39� 0.04 0.63� 0.08 0.38� 0.04 0.56� 0.03 0.50� 0.02 0.42� 0.01

MAMMOTH 0.57� 0.02 0.44� 0.01 0.64� 0.04 0.49� 0.02 0.53� 0.01 0.54� 0.01 0.61� 0.01

Vector 0.70� 0.01 0.63� 0.02 0.69� 0.01 0.57� 0.02 0.72� 0.03 0.64� 0.00 0.72� 0.01

Torsion 0.65� 0.01 0.61� 0.00 0.57� 0.02 0.61� 0.00 0.56� 0.01 0.58� 0.01 0.67� 0.01

Contact 0.64� 0.00 0.53� 0.03 0.75� 0.02 0.59� 0.01 0.70� 0.01 0.62� 0.01 0.75� 0.01

Mismatch 0.67� 0.01 0.50� 0.06 0.60� 0.02 0.53� 0.02 0.66� 0.01 0.57� 0.01 0.70� 0.00

TOPS 0.60� 0.02 0.55� 0.01 0.47� 0.06 0.53� 0.02 0.60� 0.00 0.55� 0.02 0.68� 0.01

Sum 0.69� 0.01 0.61� 0.00 0.70� 0.05 0.60� 0.01 0.67� 0.00 0.62� 0.02 0.73� 0.01

The table lists for each kernel and each enzyme class, the mean and standard deviations of the ROC scores for one-versus-all SVM classifiers trained using 3�5cv.

The highest score in each column is indicated by boldface type.
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Table 3 compares the performance of the MAMMOTH

kernel and all of the other kernels on individual GO terms

within the benchmark. Overall, the MAMMOTH kernel yields

the best performance for 16 of the 23 GO terms. By either

performance metric, the MAMMOTH kernel generally per-

forms best for molecular function GO terms, with the exception

of transmembrane receptor activity. On the other hand, not

surprisingly, the MAMMOTH kernel does a poor job of

predicting protein localization. None of the cellular component

GO terms appears in the group of terms for which the

MAMMOTH kernel improves most over the mismatch

kernel, and cellular component GO terms are enriched in the

group of terms where MAMMOTH performs worse than other

kernels.
Among the GO molecular function terms for which

MAMMOTH performs well, quite a few relate to catalytic

enzyme activity. For instance, oxidoreductase and two types of

hydrolases are among the top 10 GO terms exhibiting the most

improvements relative to the mismatch kernel for both ROC

and ROC10%. Surprisingly, however, the MAMMOTH kernel

performs poorly on the EC benchmark in the classification

of ligase, lyase, oxidoreductase, transferase, isomerase and

hydrolase. The likely explanation for this apparent discrepancy

lies in the method by which the EC benchmark was constructed

by Dobson and Doig. The benchmark specifically subtracts

structural information, by disallowing two proteins with

domains in the same SCOP superfamily to appear in a single

enzyme class.
In order to identify which GO terms the MAMMOTH

and mismatch kernels have the most trouble with, we

investigated the annotations of the top-ranked false positives

assigned by these two kernels for each GO term. For each test

set in the cross-validation, we examined the top n predictions,

where n is the total number of positive examples in the
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Fig. 1. SCOP and GO benchmark results. Each figure plots on the y-axis the number of SCOP families (panels A and B) or GO terms (panels C and

D) for which a given SVM classifier achieves a specified ROC or ROC10% score (x-axis). Each series corresponds to a different kernel, with the

exception of ‘MAMMOTH NN’, which is a nearest-neighbor classifier.
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test set. A perfect classifier will assign no false positives within

this set. For each GO term prediction, we calculated the

fraction of highly ranked false positives that are annotated

with another GO term. We compute this fraction with

respect to all five cross-validation folds, and then average

across the three repetitions. Figure 2 shows the resulting

confusion matrix for the mismatch and MAMMOTH

kernels (panels A and B, respectively). In order to show

contrast, panel C shows the difference between the matrices

in A and B.
First, we note that the two matrices look qualitatively

similar. This indicates that the two kernels tend to make similar

false positive predictions. In this analysis, both kernels tend

to perform poorly in predicting cellular component terms. Both

kernels also make a similar pattern of mistakes among a subset

of the biological process terms. The GO term ‘nucleus’ has

149 positives, much larger than any other GO term. As a result,

quite a few GO term predictions have a large fraction of false

positives annotated with the GO term ‘nucleus.’

Due to GO term dependencies that are not represented in the

ontology, the results shown in Fig. 2 occasionally overestimate

false positive rates. For example, in both the mismatch and

MAMMOTH kernel results, the term ‘purine nucleotide

binding’ has the largest fraction of false positives annotated

with ‘protein amino acid phosphorylation’ and ‘protein–

tyrosine kinase activity’. Because kinases require ATP to

phosphorylate their targets, these protein most likely bind

purine nucleotides. It is not surprising, therefore, that both

kernels make predictions of protein–tyrosine kinases or

proteins participating in amino acid phosphorylation as

purine nucleotide binding proteins. Thus, it seems likely that

these proteins represent true positives instead of false positives.
In a similar case, both the mismatch and MAMMOTH

kernels tend to incorrectly assign the term ‘signal transduction’

to proteins participating in protein amino acid phophorylation

or transport. Because signal transduction cascades often

involve phosphorylation of downstream proteins, it is not

surprising that both kernels predict proteins in phosphorylation

processes as signal transduction proteins. In addition, signal

transduction and transport processes are often coupled,

with the latter regulated by the former. One example is the

protein structure 1j2j, which is an ADP-ribosylation factor

(ARF1) binding GGA1. ARF1 is a small G protein regulating

membrane traffic. GGA1 is a Golgi-localized, gamma adaptin

ear-containing, ARF-binding protein that is involved in protein

sorting between the trans-Golgi network and the lysosome.

Due to incomplete GO annotation, it is possible that some

transport proteins are also part of a signal transduction

process, although they are not annotated in our data set.
A third example of dependencies not captured by our data

set is illustrated by the false positives associated with

‘biosynthesis’. These false positives are distributed across

multiple GO terms, especially in the case of the mismatch

kernel. This indicates the involvement of multiple functions

Table 2. Pairwise comparison of kernels for the SCOP and GO benchmarks

SCOP ROC ROC10%

Sum M-NN Vec Tor TOPS Mis Con Sum M-NN TOPS Vec Tor Mis Con

MAMMOTH 6.1e-05 0 0 0 0 0 0 9.8e-07 0 0 0 0 0 0

Sum 7e-08 0 0 0 0 0 0.0022 0 0 0 0 0

MAMMOTH NN — — — 0.0063 0.03 2e-07 3.4e-07 2.5e-07 0 0

Vector — — — 0.02 — — —

Torsion — — — — —

TOPS — — — — — —

Mismatch — —

GO ROC ROC10%

MAM Mis M-NN Con Vec TOPS Tor MAM Sum M-NN Con Vec TOPS Tor

Sum — — — 0.00076 0.00076 0.00076 0.00076 — 0.0013 0.00076 0.00076 0.00076

MAMMOTH — — 0.0017 0.00099 0.00076 0.00076 — — 0.032 0.0015 0.00086 0.00086

Mismatch — 0.021 0.021 0.00076 0.00076 — — — 0.0045 0.0011 0.00086 0.00099

MAMMOTH NN 0.029 — 0.0011 0.00076 — 0.0045 0.0019 0.0017

Contact — 0.0013 0.00086 — 0.0024 0.0019

Vector 0.013 0.0083 — —

TOPS — —

The table lists Bonferroni adjusted, one-tailed P-values from a Wilcoxon signed rank test performed on ROC and ROC10% scores from all superfamilies in the SCOP

benchmark (top) and all terms in the GO benchmark (bottom). Only P-values50.05 are reported. A significant P-value in the table indicates that the kernel in the

corresponding row outperforms the kernel in the corresponding column. A dash indicates that the median value for the row kernel exceeds the median value for the

column kernel, but that the difference is not significant.
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in the biosynthesis process. For instance, biosynthesis requires

an energy source and hence ATP-binding proteins. It also

often involves oxidoreductase activity and electron transport.

In other cases, the SVM simply confuses GO terms that are

closely related. For example, the mismatch kernel tends to

assign the term ‘hydrolase activity, acting on ester bonds’ to

endopeptidases and to serine-type peptidases. Because both

types of peptidases are hydrolases, the mismatch kernel

probably learns to predict hydrolase activity instead of the

more specific hydrolase activity acting on ester bonds.

Interestingly, only the mismatch kernel makes this type of

mistake.

Finally, the reason for some types of false positives is

unclear. The most striking example is in the prediction of the

GO term ‘hydrolase activity, acting on ester bonds’: in this case,

the MAMMOTH kernel SVM assigns the largest fraction

of false positives to proteins annotated with ‘transcription

factor activity’. The mismatch kernel also predicts some

transcription factors as positives.
The difference between the mismatch and MAMMOTH

confusion matrices is shown in Fig. 2C. As mentioned above,

we find that the types of false positive assignments are generally

similar between the two sets of results. The two methods

differ in the extent, but not the pattern of false positives.

We could find no satisfying explanation for the few cases in

which the mismatch and MAMMOTH differed. For example,

when predicting ‘regulation of transcription’ the mismatch

kernel assigns many false positives that have cytokine activity,

which is not obviously related to transcriptional regulation.

4 DISCUSSION

We have compared the performance of five protein structure

kernels, a sequence kernel and the unweighted sum of all six

Table 3. GO benchmark results

GO term MAMMOTH Mismatch Contact Vector Random

walk

Torsion Sum MAMMOTH NN

GO:0005215 MF transporter activity 0.842 0.712 0.757 0.782 0.602 0.643 0.848* 0.780

GO:0016788 MF hydrolase activity,

acting on ester bonds

0.820* 0.727 0.709 0.597 0.667 0.495 0.732 0.820

GO:0004713 MF protein-tyrosine

kinase activity

0.935* 0.867 0.817 0.743 0.722 0.789 0.883 0.857

GO:0005125 MF cytokine activity 0.982* 0.920 0.855 0.902 0.773 0.714 0.978 0.956

GO:0005509 MF calcium ion binding 0.926 0.870 0.861 0.920 0.724 0.770 0.944* 0.896

GO:0004175 MF endopeptidase activity 0.928* 0.873 0.889 0.796 0.780 0.859 0.920 0.913

GO:0016491 MF oxidoreductase activity 0.931* 0.879 0.831 0.879 0.705 0.695 0.931 0.893

GO:0003700 MF transcription

factor activity

0.871* 0.825 0.824 0.829 0.820 0.708 0.865 0.829

GO:0009058 BP biosynthesis 0.804 0.763 0.771 0.762 0.762 0.715 0.821* 0.741

GO:0006810 BP transport 0.843 0.809 0.773 0.700 0.590 0.650 0.797 0.866*

GO:0006351 BP transcription,

DNA-dependent

0.885* 0.856 0.783 0.844 0.752 0.678 0.881 0.838

GO:0006468 BP protein amino acid

phosphorylation

0.917 0.904 0.788 0.756 0.730 0.700 0.924 0.935*

GO:0006508 BP proteolysis and

peptidolysis

0.930 0.918 0.880 0.859 0.854 0.882 0.927 0.954*

GO:0045449 BP regulation of

transcription

0.861* 0.851 0.810 0.824 0.792 0.681 0.852 0.811

GO:0008236 MF serine-type

peptidase activity

0.977 0.968 0.969 0.966 0.894 0.912 0.995* 0.967

GO:0005634 CC nucleus 0.888 0.879 0.844 0.795 0.721 0.744 0.889 0.893*

GO:0017076 MF purine nucleotide

binding

0.813 0.814 0.725 0.748 0.677 0.626 0.828* 0.804

GO:0016021 CC integral to membrane 0.868 0.875* 0.794 0.737 0.709 0.696 0.857 0.853

GO:0007596 BP blood coagulation 0.959 0.968* 0.955 0.916 0.849 0.885 0.967 0.912

GO:0004888 MF transmembrane

receptor activity

0.852 0.876 0.873 0.863 0.769 0.767 0.876* 0.825

GO:0005737 CC cytoplasm 0.834 0.877* 0.837 0.810 0.744 0.719 0.873 0.860

GO:0007165 BP signal transduction 0.742 0.786* 0.663 0.689 0.675 0.579 0.722 0.754

GO:0043234 CC protein complex 0.765 0.809 0.752 0.704 0.737 0.707 0.783 0.838*

The table lists, in each row, a GO term and the corresponding mean ROC scores generated by the various SVM kernels and by the MAMMOTH nearest neighbor

classifier. Values in boldface are the maximum among the six individual kernels. Asterisked values are the maximum among all eight methods. Rows are sorted by the

difference between MAMMOTH and mismatch SVM mean ROC scores. A similar table for ROC10% is in the online supplement.
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kernels. Among these, the MAMMOTH kernel is clearly

the most powerful, yielding highly accurate classification

performance across the SCOP and GO benchmarks.

We have reported results on the EC benchmark primarily

because others have used this benchmark (Dobson and

Doig, 2005; Borgwardt et al., 2005). However, we do not

emphasize the EC results because we believe that the bench-

mark is flawed. In the benchmark, two SCOP domains from

the same superfamily are not allowed to occur in the same

EC class but are allowed to occur in different EC classes.

This setup removes most of the information that a sequence-

or structure-based method can use. In fact, all of the methods

that we tested yield poor performance on the EC benchmark,

with ROC scores rarely exceeding 0.7. The vector kernel

yields slightly better performance presumably because it

includes additional informative features; for example, the

presence of FAD is indicative of oxidoreductase activity.
An important caveat for the comparison of the structure-

based and sequence-based kernels is that, for the purposes of

this study, we have restricted the mismatch kernel to using only

sequences from proteins for which the 3D structure is known.

In practice, for the GO benchmark, many protein sequences

are available for which no structure is known. We expect

that the performance of the mismatch kernel, or any other

sequence-based kernel, would improve dramatically if we used

all available sequence data.

For the classification tasks that we investigated, the simple

combination of kernels provided by the sum kernel does

not improve upon the best single-kernel learning method.

This result might arise because the difference in performance

between the best-performing MAMMOTH kernel and the

other kernels is so large. In the future we will investigate more

sophisticated ways to optimize linear combinations of kernels

for each problem (Lanckriet et al., 2004; Bach et al., 2004).

On the other hand, the observation that some kernels provide

good performance on a subset of GO terms suggests a simple

way of leveraging our repertoire of kernels: rather than

performing kernel summation, we can choose the best kernel

for a particular term using cross-validation.
One question raised by the current study is why the TOPS

kernel performs so poorly. This kernel was intended to

essentially replicate the random walks kernel of Borgwardt

et al. However, the published results for this kernel on a variant

of the EC benchmark (Borgwardt et al., 2005) suggest that

the random walks kernel out-performs the vector kernel.

We initially intended to include the random walks kernel

in this study, using code provided by Borgwardt et al.

However, that kernel is extremely costly to compute, and

computing the kernel matrices for our benchmarks would

require more computational resources than are currently

available to us.
In conclusion, we have described a straightforward method

to derive a protein structure kernel from an existing structure

alignment algorithm, and we have demonstrated that, for the

SCOP and GO benchmarks used here, this kernel outperforms

a variety of alternative protein structure kernels.

C
C

B
P

M
F

(A) Mismatch (B) MAMMOTH (C) Mismatch minus MAMMOTH

Fig. 2. Confusion matrices for mismatch and MAMMOTH kernels. Within each matrix, the value displayed in row i and column j is the average

fraction of false positives annotated with GO term j when predicting GO term i. Panel A is for predictions made using the mismatch kernel; panel B is

for the MAMMOTH kernel, and panel C shows the difference between panels A and B. The heat maps were generated using matrix2png

(Pavlidis and Noble, 2003).
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