
BIOINFORMATICS Vol. 19 no. 16 2003, pages 2097–2104
DOI: 10.1093/bioinformatics/btg288

Kernel hierarchical gene clustering from
microarray expression data

Jie Qin1,∗, Darrin P. Lewis2 and William Stafford Noble3,†

1Columbia Genome Center, Columbia University, 1150 St. Nicholas Avenue,
New York, NY 10032, USA, 2Department of Computer Science, Columbia University,
1214 Amsterdam Avenue, New York, NY 10027, USA and 3Department of Genome
Sciences, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA

Received on July 13, 2002; revised on December 20, 2002; accepted on May 8, 2003

ABSTRACT
Motivation: Unsupervised analysis of microarray gene expres-
sion data attempts to find biologically significant patterns
within a given collection of expression measurements. For
example, hierarchical clustering can be applied to expres-
sion profiles of genes across multiple experiments, identifying
groups of genes that share similiar expression profiles. Previ-
ous work using the support vector machine supervised learn-
ing algorithm with microarray data suggests that higher-order
features, such as pairwise and tertiary correlations across mul-
tiple experiments, may provide significant benefit in learning
to recognize classes of co-expressed genes.
Results: We describe a generalization of the hierarchical clus-
tering algorithm that efficiently incorporates these higher-order
features by using a kernel function to map the data into a
high-dimensional feature space. We then evaluate the util-
ity of the kernel hierarchical clustering algorithm using both
internal and external validation.The experiments demonstrate
that the kernel representation itself is insufficient to provide
improved clustering performance. We conclude that mapping
gene expression data into a high-dimensional feature space
is only a good idea when combined with a learning algorithm,
such as the support vector machine that does not suffer from
the curse of dimensionality.
Availability: Supplementary data at www.cs.columbia.edu/
compbio/hiclust. Software source code available by request.
Contact: jq22@columbia.edu

INTRODUCTION
Finding structure in large data sets is a venerable, well-studied
problem that has recently received an explosion of interest
from biologists using microarray expression measurement
technology. Eisenet al. (1998) popularized the use of hier-
archical clustering (Duda and Hart, 1973) to find groups of
similarly expressed genes or gene expression experiments.

∗To whom correspondence should be addressed.
†Formerly William Noble Grundy, see www.gs.washington.edu/~noble/
name-change.html

This algorithm has several well-known drawbacks, most not-
ably that it is statistically unstable in the face of small perturba-
tions of the data. Therefore, many subsequent papers have
suggested applying alternate clustering algorithms to micro-
array data. Some of these algorithms were adopted from prior
literature in other fields and some were developed specifically
for microarray data (see Slonim, 2002, for a review). How-
ever, the standard hierarchical clustering algorithm remains
among the most widely used in this field, due to its simpli-
city, its intuitive, tree-structured output and the availability of
several free software tools.

Concurrently, within the field of machine learning, much
recent research has focused upon a class of algorithms that
employ so-calledkernel functions to operate efficiently on
a non-linearly transformed version of a given data set. The
motivation for this transformation is simple: the features,
or variables, within a given data set often share complex,
non-linear relationships. Say that you are looking for a cor-
relation between gene expression levels and some clinical
variable. It may be the case that no single gene expression
level is directly related to the clinical variable of interest,
but a pair of genes is strongly predictive (see Table 1). In
this situation, the product of the expression levels of the
two genes is much more informative than the expression
level of either gene by itself. A simple solution is to mul-
tiply all pairs of gene expression values, and operate on
this transformed data set. However, when an expression
data set contains 10 000 genes, looking at all pairs of genes
results in a data set of 100 000 000 genes. Analyzing such
a large data set is computationally expensive, and only gets
worse if we are interested in tertiary, rather than pairwise,
correlations.

The kernel trick allows higher-order features, such as pair-
wise or higher correlations, to be analyzed efficiently. Any
algorithm can be ‘kernelized’ if the algorithm can be stated
so that each vector of input data only appears within a dot
product operation. The non-linear version of the algorithm
is then created by replacing the normal dot product with
an alternate function, known as a kernel function. Mercer’s

Bioinformatics 19(16) © Oxford University Press 2003; all rights reserved. 2097

J.Qin et al.

Table 1. A non-linear relationship between gene expression level and a
clinical variable

Experiment
1 2 3 4

Gene 1 Low High Low High
Gene 2 Low Low High High
Clinical variable False True True False

Neither gene’s expression level is sufficient to predict the Boolean variable, but the two
expression levels together are predictive.

theorem (Cristianini and Shawe-Taylor, 2000) guarantees that,
as long as the kernel function exhibits certain mathemat-
ical properties (namely, that it is positive definite), then the
algorithm implicitly operates in a higher-dimensional space.
For example, if the standard dot production operation is
replaced by the square of the dot product, i.e. ifK(X,Y) =
(X · Y)2, then we can prove that the kernelized algorithm,
although operating only on 10 000 gene features, will yield
the same results as if the non-kernelized algorithm were
given all 100 000 000 pairwise products of the gene features.
The kernel trick saves the algorithm from the computational
expense of explicitly representing all of the features in the
higher-dimensional space.

The kernel trick was popularized in the context of support
vector machine (SVM) learning (Vapnik, 1998). The SVM is a
supervised machine learning algorithm that is frequently used
in a kernelized form. Subsequently, kernel versions of several
other algorithms have been described, including Fisher’s lin-
ear discriminant (Mikaet al., 1999) and principal components
analysis (Schölkopfet al., 1997). The current work is particu-
larly motivated by a study that demonstrated the applicability
of the SVM algorithm to learning gene classifications from
microarray expression data (Brownet al., 2000). In this paper,
the classification performance of the SVM improved consi-
derably when a non-linear kernel function was inserted into
the algorithm. This result suggests that gene expression data
contains informative, higher-order features which may not be
apparent in the raw data. Such relationships are not surprising,
given the complex network of gene regulatory interactions that
give rise to the observed expression data.

In this paper, therefore, we demonstrate how to apply
the kernel trick to the hierarchical clustering algorithm. The
resulting algorithm is nearly as efficient as standard hierarch-
ical clustering, and can operate in very high-dimensional,
implicit feature spaces. We then empirically validate the
utility of the resulting algorithm on the task of cluster-
ing genes based upon the microarray expression profiles.
The results are not encouraging. In short, although ker-
nel hierarchical clustering does produce different results
from standard hierarchical clustering, those results are not
necessarily any better. Using multiple data sets, we evaluate

the goodness of the clustering results internally, by predict-
ing the cluster membership of held-out examples, as well
as externally, by comparing clusters with functional annota-
tions. Using either measure, the kernel-derived clusters are
sometimes better and sometimes worse than the standard
clusters. This work is therefore a cautionary tale. We hypo-
thesize that the advantage offered by the kernel trick may
be fairly specific to the SVM and other large margin clas-
sifiers that do not suffer dramatically from the curse of
dimensionality.

ALGORITHM
Standard hierarchical clustering
Agglomerative hierarchical clustering consists of initially
treating each input point as a cluster and then iteratively merg-
ing the two clusters that are closest together. This iterative
merging procedure continues until all points have been merged
into a single cluster. The order of mergers determines the topo-
logy of a binary tree, which is the output of the algorithm.
Clusters can be derived by selecting subtrees from this tree.

The primary difference among hierarchical clustering
algorithms lies in the method of finding the closest pair of
clusters in line (3) of Figure 1. In this paper, we consider
four methods of measuring similarities among clusters. All
are based on a common metric for measuring the similar-
ity of a pair of points. In many applications, this point-wise
comparison is based upon a Euclidean distance. However,
for comparing gene expression profiles, Eisenet al. (1998)
employ a modified version of the Pearson correlation coef-
ficient rather than the Euclidean distance. This modified
correlationr(·, ·) betweenX andY is

r̂(X,Y) =
∑

XiYi√(∑
X2

i

)(∑
Y 2

i

) (1)

Using this metric, the similarity between a pair of clusters
A andB can be computed in four ways. In single-link cluster-
ing, the similarity betweenA andB is simply the maximum
similarity between a point in clusterA and a point in clusterB.
Complete-link clustering is the same, but using the minimum
point-wise similarity. Average-link clustering, as the name
suggests, uses the mean of all pairwise similarities between
clusters. The fourth algorithm, centroid-link clustering, com-
putes the distance between clusters by first representing each
cluster via a centroid or mean vector, each component of
which is the mean of the corresponding components across
all vectors in the cluster. The inter-cluster similarity is the
similarity of these two mean vectors, computed according to
Equation (1).

In the first three of these four clustering algorithms, the
merging of two clusters [line (4) in Fig. 1] is trivial. For
the centroid-link algorithm, the merging can be accomp-
lished efficiently by combining previously computed mean

2098

Kernel hierarchical clustering of microarray data

(1) Initialize every point as a cluster
(2) while morethan one cluster remains
(3) Find the closest pair of clusters
(4) Merge the two clusters
(5) end

Fig. 1. Generic agglomerative hierarchical clustering algorithm.
The differences among hierarchical clustering algorithms lie in the
methods of calculating the distance between clusters in line (3).

vectors. Given two such vectors,A = A1,A2, . . . , An and
B = B1,B2, . . . , Bn, representing clusters of sizesa andb,
respectively, the algorithm computes the new mean vectorÂ

by taking the weighted mean of each element:

Âi = aAi + bBi

a + b
(2)

Kernel hierarchical clustering
The kernel version of hierarchical clustering uses the kernel
trick to map implicitly the gene expression data into a higher-
dimensional feature space. Clustering then takes place in the
feature space. Note that the function� that maps from the
input space to the feature space may not be known, but such
a function is guaranteed to exist for any valid kernel func-
tion. For centroid-link hierarchical clustering, this implicit
mapping occurs prior to the computation of centroids. The
centroid of a cluster in feature space is not the same as the
mapped version of the centroid computed in the input space.

In order to produce a kernel version of the hierarchical clus-
tering algorithm, we must be able to state the entire algorithm
in terms of dot products between pairs of input vectors.
This transformation is straightforward for both the Euclidean
distance (results not shown) and the modified Pearson correla-
tion. The modified Pearson correlation [Equation (1)] can be
re-stated in terms of dot products as follows:

r̂(X,Y) = X · Y√
(X · X)(Y · Y)

(3)

The kernel version of the algorithm employs Equation (3),
with the kernel functionK(·, ·) substituted in place of each
dot product operation.

In addition to computing distances or correlations, the
kernel version of centroid-link hierarchical clustering requires
that the cluster merging operation be carried out in terms
of dot product operations. We show inductively how this
update step works. The base case occurs prior to any mer-
ging, when the kernel matrixK is computed for the entire
data set. Each vector in the data set is a cluster of size 1,
and the vector itself is trivially equal to the centroid of this
single-vector cluster. For the inductive step, we assume that
the kernel matrixK contains kernel values between pairs of
cluster means. Let clusterA, represented (in the feature space)
by centroid vector�(A), consist ofa vectors, and similarly

A+B

A+B

A

B

A B

AfterBefore

Updated with Equation 8

Updated with Equation 9

Not updated

No longer relevant

Fig. 2. Kernel update procedure.

for clusterB. Then the corresponding kernel matrix entry is
K(A,B) = �(A) ·�(B). We want to mergeA andB to form
a new clusterÂ containinga + b vectors.

To update the kernel matrix, we need to deal with two cases.
The first is the kernel value between the merged clusterÂ and
some other clusterC. Following Equation (2), we can write
the desired kernel value in terms of known kernel values:

K(Â, C) = aK(A,C) + bK(B,C)

a + b
(4)

Equation (4) is the update rule for off-diagonal elements in
the kernel matrix. For diagonal elements, the expression is as
follows:

K(Â, Â) = a2K(A,A) + 2abK(A,B) + b2K(B,B)

a2 + 2ab + b2
(5)

Equations (4) and (5) are sufficient to update the kernel matrix
after the merger of clustersA andB. Each update requires
constant time and updating the entire kernel matrix requires
modifyingO(m) values in the matrix, wherem is the number
of clusters. The kernel matrix update procedure is illustrated
in Figure 2.

VALIDATION OF CLUSTERING METHODS
Validation techniques for clustering methods fall into two
categories: internal validation measures the quality of clusters
based only upon the data, whereas external validation meas-
ures the agreement between the derived clusters and some
external gold standard (Jain and Dubes, 1988). To evaluate
kernel hierarchical clustering, we use one internal validation
method and one external validation method.

Internal validation
The internal validation method measures the ‘learnability’ of
a given set of clusters. Much work has been done evaluating
clustering of gene expression data (Sharan and Shamir, 2000;
Yeunget al., 2000); however, most such metrics require that
the clustering be a complete partition. We specifically wanted
to avoid a metric that evaluates the entire clustering because
only the most prominent clusters in a given expression set
are typically of interest. Given the relatively noisy character

2099

J.Qin et al.

of microarray expression data, the more subtle clusters are
likely to be indistinguishable from the noise.

We propose a learnability approach to internal cluster
validation that determines the fitness of a given cluster by
measuring the difference between the structure of the cluster
and a structural prior. Our prior assumes that clusters are
spherical in shape. This assumption corresponds to the learn-
ing bias of thek-nearest neighbor classifier (k-NN). k-NN is
a supervised learning algorithm that takes as input a collec-
tion of labeled,n-dimensional points. The algorithm assigns
to unclassified points the label of the majority of itsk-nearest
neighbors. We can imagine a ball, or hypersphere, in the input
space centered at the unlabeled point, with radius equal to the
distance to thekth nearest neighbor. The unlabeled point is
assigned the label of the majority of the labeled points within
the hypersphere.

The figure of merit we suggest is a learnability score
obtained by cross validation usingk-NN. The score is related
to the jackknife resampling idea that motivates the figures of
merit described by Yeunget al. (2000). In that work, the jack-
knife is performed by iteratively leaving out a single feature
in each vector of the data set being clustered, and then com-
paring the resulting clusterings. In this work, we use 2-fold
cross validation to evaluate the quality of a cluster. Rather than
holding out a single vector for testing, we withhold half of the
data, chosen at random. This technique reduces dependence
problems caused by overlap of the training sets in the jack-
knife technique. We perform five replications of 2-fold cross
validation to overcome variance due to the random sampling
(Dietterich, 1998; Alpaydin, 1999).

For a given hierarchical clustering tree, our approach con-
siders each subtree as a candidate cluster. We evaluate each
cluster individually and use the membership status of each
input vector to produce a binary labeling of the data. The data
and labels are randomly partitioned into two roughly equal-
sized sets. Each set, in turn, is used as the labeled training set
while the remaining set is used as unlabeled test data.k-NN
is used to classify the test set. After this procedure, each point
is categorized as a true positive (TP) ifk-NN predicts that it
belongs to the cluster and it actually does belong to the cluster,
a false positive (FP) ifk-NN places it in the cluster when it
does not belong there, a true negative (TN) ifk-NN correctly
places it outside the cluster and a false negative (FN) ifk-NN
incorrectly places it outside the cluster. The entire process is
repeated five times.

For each candidate class, the number of TPs, FPs, TNs
and FNs can be combined into a performance metric. For this
metric, we use the product of precision and recall (PPR). In
terms of TP, FP, and FN counts, the precision is expressed
as TP/(TP+ FP), and recall is expressed as TP/(TP+ FN).
Precision reflects how well the classifier rejects members of
the negative class. Recall reflects how well a classifier iden-
tifies the members of the positive class. Ideally, the classifier
would do well at both of these, which motivates taking the

Table 2. Data sets used in this study

Data Source Genes Annot Arrays

Yeast Eisenet al., 1998 6070 2465 79
Yeast SMD 6112 2404 441
Mouse brain Sandberget al., 2001 10 000 6437 24
Leukemia Golubet al., 1999 7129 4963 72
Colon cancer Alonet al., 2000 2000 N/A 62

Column two lists the total number of genes included on the arrays; column three lists the
number of genes that are annotated in the MYGD (yeast) or the Gene Ontology (mouse
brain and leukemia).

product of the measures. As mentioned above, we do not
expect every gene within a microarray data set to fall into a
biologically meaningful cluster. Therefore, in order to com-
pare two different hierarchical clustering trees, we compute
and compare the scores of the top ten non-overlapping clusters
from each tree.

External validation
The second validation method compares the given tree to an
external gold standard. In this method, the gold standard con-
sists of a large collection of possibly overlapping clusters.
The clusters are identified using prior knowledge of the data,
although not every cluster must appear in the data. In the
evaluation, we aim to identify subtrees within the hierarch-
ical clustering tree that correspond to classes within the gold
standard. This is accomplished by computing PPR scores for
each subtree with respect to each gold standard class. For each
score, the maximal score for each cluster is selected as the best
match. As in the internal validation, we consider only the top
ten non-overlapping clusters from each tree.

METHODS
Data
The experiments compare clustering performance across five
sets of gene expression data, summarized in Table 2. The
first set, from Eisenet al., consists of 79 yeast microarray
experiments from varying conditions, including the diauxic
shift (DeRisi et al., 1997), the mitotic cell division cycle
(Spellmanet al., 1998), sporulation (Chuet al., 1998), and
temperature and reducing shocks. Each array contains 6070
genes, of which Eisenet al. identified 2465 for which the
function is known a priori. The annotations for these genes
are derived from the MIPS Yeast Genome Database (MYGD)
(Meweset al., 2000). All 6070 genes are used for internal val-
idation, but only the 2465 known genes are used for external
validation.

2100

Kernel hierarchical clustering of microarray data

The second data set is an expanded version of the
first. The set consists of 441 yeast experiments col-
lected from the Stanford Microarray Database (genome-
www5.stanford.edu/MicroArray/SMD). This data set contains
6112 genes, with missing values imputed using ak-nearest
neighbor approach (Troyanskayaet al., 2001). Annotations
are again derived from MYGD, resulting in a set of 2404
annotated genes.

The remaining three data sets are from studies of mouse and
human. For these data sets, gene classifications are extrac-
ted from the Gene Ontology Consortium (2000). The mouse
data set (Sandberget al., 2000) consists of 24 Affymet-
rix arrays, corresponding to six brain regions in two mouse
strains with two-fold replication of each experiment. The first
human data set (Golubet al., 1999) consists of data from 72
human patients, each exhibiting one of two different types
of acute leukemia. The final data set (Alonet al., 1999)
consists of 62 Affymetrix array experiments performed on
40 colon cancer tumors and 20 colon tissue samples from
normal patients. Only the expression levels from the 2000
genes with highest minimal expression level across samples
are publicly available. All 2000 genes are used in the exper-
iments reported here. For this data set, no external validation
is performed because functional annotations are not readily
available.

Implementation
The kernel hierarchical clustering algorithm was implemented
in C++. The implementation was validated by compar-
ing the output to that produced by Cluster (rana.lbl.gov/
EisenSoftware.htm). The software is available upon request
from the authors.

Kernel functions
In any kernelized algorithm, the choice of kernel func-
tion must be made a priori. Because the kernel function
determines the space in which the algorithm will operate,
this choice is critical. Unfortunately, little is known about
how best to select a kernel function for a given data set
and algorithm. Accordingly, we adopt the standard empir-
ical approach of experimenting with several common kernel
functions. First, we use the first-degree polynomial ker-
nel (POLY-1), K(X,Y) = X · Y . This kernel was chosen
as a baseline, because it amounts to not appyling the ker-
nel trick: for POLY-1, the input space and feature space are
identical. The POLY-2 and POLY-3 kernels areK(X,Y) =
[(X · Y) + 1]2 andK(X,Y) = [(X · Y) + 1]3, respectively.
The feature spaces induced by these kernels include features
corresponding to all pairs or triples of features in the input
space. Finally, the radial basis function (RBF) kernel

K(X,Y) = e−||X−Y ||2/(2σ 2) (6)

is chosen for its ability to learn complex mappings. The
RBF kernel function can learn, e.g., checkerboard patterns

Table 3. Direct comparison of trees computed using standard and kernel-
based centroid-link hierarchical clustering

POLY-2 POLY-3 RBF

Yeast-79 26.5 26.6 39.7
Yeast-SMD 30.3 30.2 39.2
Mouse 75.6 70.6 81.9
Leukemia 57.9 56.5 66.7
Colon 64.3 70.0 76.3

Each number in the table is the percentage of branches in the given kernel tree that do
not appear in the corresponding standard tree.

Table 4. Comparison of internal validation results

Algorithm Data set POLY-1 POLY-2 POLY-3 RBF

Centroid Yeast-79 0.796 0.796 0.800 0.258
Yeast-SMD 0.708 0.709 0.742 0.093
Mouse 0.618 0.608 0.650 0.514
Leukemia 0.751 0.728 0.742 0.472
Colon 0.865 0.855 0.826 0.854

Average Yeast-79 0.811 0.798 0.814 0.256
Yeast-SMD 0.781 0.774 0.782 0.087
Mouse 0.654 0.604 0.661 0.571
Leukemia 0.763 0.721 0.761 0.457
Colon 0.880 0.878 0.880 0.862

Single Yeast-79 0.769 0.769 0.769 0.258
Yeast-SMD 0.639 0.635 0.639 0.093
Mouse 0.356 0.314 0.356 0.340
Leukemia 0.565 0.534 0.565 0.453
Colon 0.853 0.853 0.853 0.849

Complete Yeast-79 0.751 0.742 0.751 0.321
Yeast-SMD 0.743 0.743 0.743 0.047
Mouse 0.680 0.601 0.680 0.509
Leukemia 0.692 0.668 0.692 0.411
Colon 0.854 0.854 0.854 0.792

Eighty trees were generated, corresponding to four clustering algorithms, four kernels,
and five data sets. For each tree, 10 subtrees were selected that maximize the product of
precision and recall. In the table, each entry is the average PPR across these ten subtrees.
Due to computational constraints, the PPR scores for the mouse data set are based on
3000 genes chosen at random from the 6437 annotated genes.

and other complex decision surfaces (Cristianini and Shawe-
Taylor, 2000). The widthσ is set to 0.01 in the results reported
here. In the online supplement, results from additional values
of σ are reported.

RESULTS
Our experiments suggest that, although kernel hierarchical
clustering produces trees whose topology differs depending
upon the choice of kernel function, these differences are not
likely to provide useful biological insight.

We first verify that the hierarchical clustering algorithm pro-
duces significantly different trees, depending upon the kernel

2101

J.Qin et al.

Table 5. Comparison of three kernels across five MYGD classes in the 79-experiment yeast data set using centroid-link clustering

POLY-1 POLY-2 POLY-3 RBF

Class Size FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN

TCA 17 0 14 3 2448 0 14 3 2448 1 13 4 2447 2008 0 17 440
Resp 30 1 17 13 2434 0 17 13 2435 1 17 13 2434 2269 0 30 166
Ribo 121 12 15 106 2332 14 14 107 2330 14 15 106 2330 5 28 93 2339
Prot 35 1 9 26 2429 3 7 28 2427 7 5 30 2423 2267 0 35 163
Hist 11 0 2 9 2454 0 2 9 2454 0 2 9 2454 0 4 7 2454

The number of TPs, FPs, TNs and FNs is shown for five MYGD classes that were identified by Eisenet al. For each kernel and class, the subtree was selected that maximizes the
PPR. The classes are tricarboxylic acid cycle, respiration chain complex, ribosomal proteins, proteasome, and histones.

function. For each data set, we compare the binary tree pro-
duced by standard hierarchical clustering with corresponding
trees produced using non-linear kernel functions. Any tree can
be described as a set of branches, in which each branch divides
the leaves into two partitions. Two hierarchical clustering trees
derived from the same data can therefore be compared with
one another by counting the number of branches by which they
differ. For some kernels and some types of clustering, the ker-
nelization has no effect. In particular, the POLY-3 kernel does
not change the similarity ranking of genes; hence, the kernel
and non-kernel versions of the single-link and complete-link
algorithms yield identical results with this kernel (see the sup-
plementary data). In contrast, forσ = 0.01, the RBF kernel
uniformly yields quite different results for all four clustering
algorithms. Other settings yield smaller differences. Table 3
summarizes the comparisons for centroid-link clustering, in
terms of the percentage of branches that differ between pairs
of trees. In all cases,>25% of the branches in the standard
hierarchical clustering tree do not appear in the corresponding
kernel versions. Overall, these results show that kerneliz-
ing the hierarchical clustering algorithm often produces quite
different trees.

Table 4 shows the results of internal validation of the various
clusterings using thek-nearest neighbor approach. Although
the PPR scores vary across the different kernel functions, there
is no clear trend. If kernel hierarchical clustering provided a
benefit, then we would expect the highest PPR scores to appear
in the POLY-2, POLY-3 and RBF columns. This is not always
the case.

For external validation, we first return to the five gene
expression classes that were identified by Eisenet al. as
clustering well in the Yeast-79 data set. These classes were
also the subject of SVM analysis in the paper by Brownet al.
In Table 5, the numbers of true and false positives and nega-
tives are provided for each of these classes and for each kernel
function. The table lists results for centroid-link clustering;
results from the other clustering algorithms are similar (see
the supplementary data). Overall, the classification perform-
ance of the clustering algorithm does not change dramatically

Table 6. Summary of external validation results

Algorithm Data set POLY-1 POLY-2 POLY-3 RBF

Centroid Yeast-79 0.546 0.549 0.541 0.426
Yeast-SMD 0.454 0.457 0.445 0.259
Mouse 0.364 0.358 0.359 0.358
Leukemia 0.575 0.575 0.575 0.55

Average Yeast-79 0.549 0.552 0.540 0.423
Yeast-SMD 0.523 0.527 0.520 0.259
Mouse 0.367 0.367 0.367 0.363
Leukemia 0.616 0.616 0.616 0.55

Single Yeast-79 0.523 0.523 0.523 0.427
Yeast-SMD 0.442 0.442 0.442 0.259
Mouse 0.350 0.350 0.350 0.350
Leukemia 0.575 0.575 0.575 0.55

Complete Yeast-79 0.489 0.461 0.489 0.279
Yeast-SMD 0.517 0.516 0.516 0.259
Mouse 0.363 0.363 0.363 0.363
Leukemia 0.614 0.614 0.614 0.564

Each entry in the table is the average PPR score across the top ten classes found in a
given hierarchical clustering tree. Results are given for each kernel function and each
clustering algorithm.

as the kernel function is changed, except using the RBF kernel.
In most cases, using a polynomial kernel results in a change
of only a few misclassifications. The RBF results show that
this version of the uniformly algorithm fails to find accur-
ate clusters. These results are strongly dependent upon the
width σ in Equation (6). For this data set, a larger value
of σ yields results that are much closer to the results from
the non-kernelized algorithm (see supplementary results). In
no case, however, does the kernelized algorithm offer much
improvement over the standard algorithm.

Similarly, the top-scoring classes for each of the data sets
do not show any clear trends with respect to the choice of the
kernel function. Table 6 lists the average PPR scores for all
four data sets, four linkage criteria and four kernel functions.
Detailed listings of the individual class scores are provided

2102

Kernel hierarchical clustering of microarray data

in the online supplement. Overall, the rankings are quite sim-
ilar to one another, even for the average-link and centroid-link
algorithms, which we have seen yield quite different trees. For
example, among the four different top ten rankings for the
centroid-link algorithm and Yeast-SMD set, three rankings
(POLY-1, POLY-2 and POLY-3) are re-orderings of the same
10 classes and the PPR scores for the outlier (RBF) are rel-
atively low. A similar pattern is observed for the other three
data sets.

DISCUSSION
We have demonstrated that, for these data sets and kernel func-
tions, using kernel hierarchical clustering does not provide
better results than using the standard version of the algorithm.
A negative result such as the one reported here is always
difficult to generalize. We cannot prove that kernel hierarch-
ical clustering is not a good idea in general, only that it is
not apparent that the algorithm provides a benefit in these
experiments.

There are three primary reasons to report this negative result
in the scientific literature. The first is to caution researchers
who may in the future consider performing experiments such
as these. Hopefully, this report will prevent repetition of our
efforts.

The second motivation for this report is to provide insight
into the idea of kernelization. The SVM and related large-
margin classifiers were formulated specifically to operate well
in very high-dimensional feature spaces. They are, in a sense,
designed to combat the curse of dimensionality. As such, the
kernel trick, which usually increases the dimensionality of
the feature space, is less disadvantageous when used in con-
junction with such an algorithm. Other algorithms, however,
should be kernelized more judiciously.

Finally, this paper may also provide avenues for future
research. Other clustering algorithms, such ask-means, may
benefit more from kernelization than does hierarchical cluster-
ing. Also, it may be the case that kernel hierarchical clustering
will be useful in conjunction with feature selection tech-
niques that prevent the feature space from becoming unwieldy.
Alternatively, the feature space might be derived from a
generative model (Jaakkola and Haussler, 1998), thereby
providing a concise set of features that, by incorporating
appropriate prior knowledge, are more informative than the
original data set. In combination with a specialized clustering
algorithm (Tsudaet al., submitted for publication), such an
approach may provide significant benefit in the clustering of
microarray gene expression data.

ACKNOWLEDGMENTS
This paper was funded by a Sloan Research Fellowship
to W.S.N. and by National Science Foundation grants
DBI-0078523 and ISI-0093302.

REFERENCES
Alon,U., Barkai,N., Notterman,D.A., Gish,K., Ybarra,S., Mack,D.

and Levine,A.J. (1999) Broad patterns of gene expres-
sion revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays.PNAS, 96,
6745–6750.

Alpaydin,E. (1999) Combined 5× 2 cv f test for comparing super-
vised classification learning algorithms.Neural Comput., 11,
1885–1892.

Brown,M.P.S., Grundy,W.N., Lin,D., Cristianini,N., Sugnet,C.,
Furey,T.S., Ares,J.M. and Haussler,D. (2000) Knowledge-based
analysis of microarray gene expression data using support vector
machines.PNAS, 97, 262–267.

Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.
and Herskowitz,I. (1998) The transcriptional program of sporula-
tion in budding yeast.Science, 282, 699–705.

Cristianini,N. and Shawe-Taylor,J. (2000)An Introduction to Support
Vector Machines. Cambridge University Press, Cambridge.

DeRisi,J., Iyer,V. and Brown,P. (1997) Exploring the metabolic
and genetic control of gene expression on a genomic scale.
Science, 278, 680–686.

Dietterich,T. (1998) Approximate statistical tests for comparing
supervised classification learning algorithms.Neural Comput.,10,
1885–1923.

Duda,R.O. and Hart,P.E. (1973)Pattern Classification and Scene
Analysis. Wiley, New York.

Eisen,M., Spellman,P., Brown,P. and Botstein,D. (1998) Cluster
analysis and display of genome-wide expression patterns.
PNAS, 95, 14863–14868.

Gene Ontology Consortium (2000) Gene ontology: tool for the
unification of biology.Nat. Genet., 25, 25–9.

Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gaasenbeek,M.,
Mesirov,J.P., Coller,H., Loh,M.L., Downing,J.R., Caligiuri,M.A.
et al. (1999) Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.Science, 286,
531–537.

Jaakkola,T. and Haussler,D. (1998) Exploiting generative models
in discriminative classifiers. InAdvances in Neural Information
Processing Systems 11. Morgan Kauffmann, San Mateo, CA.

Jain,A. and Dubes,R. (1988)Algorithms for Clustering Data. Pren-
tice Hall, New Jersey.

Mewes,H.W., Frishman,D., Gruber,C., Geier,B., Haase,D., Kaps,A.,
Lemcke,K., Mannhaupt,G., Pfeiffer,F., Schüller,C.et al. (2000)
MIPS: a database for genomes and protein sequences.Nucleic
Acids Res., 28, 37–40.

Mika,S., Rätsch,G., Weston,J., Schölkopf,B. and Müller,K.-R.
(1999) Fisher discriminant analysis with kernels. InProceedings
of the IEEE Neural Networks for Signal Processing Workshop
1999.

Sandberg,R., Yasuda,R., Pankratz,D., Carter,T., Rio,J.D.,
Wodicka,L., Mayford,M., Lockhart,D. and Barlow,C. (2000)
Regional and strain-specific gene expression mapping in the
adult mouse brain.PNAS, 97, 11038–11043.

Schölkopf,B., Smola,A. and Müller,K.-R. (1997) Kernel principal
component analysis. InProceedings ICANN97. Springer Lecture
Notes in Computer Science, p. 583.

Sharan,R. and Shamir,R. (2000) CLICK: A clustering algorithm for
gene expression analysis. InProceedings of the 8th International

2103

J.Qin et al.

Conference on Intelligent Systems for Molecular Biology. AAAI
Press, pp. 307–316.

Slonim,D.K. (2002) From patterns to pathways: gene expression data
analysis comes of age.Nat. Genet. (Suppl. 2), 502–508.

Spellman,P.T., Sherlock,G., Zhang,M.Q., Iyer,V.R., Anders,K.,
Eisen,M.B., Brown,P.O., Botstein,D. and Futcher,B. (1998)
Comprehensive identification of cell cycle-regulated genes of the
yeastSaccharomyces cerevisiae by microarray hybridization.Mol.
Biol. Cell, 9, 3273–3297.

Troyanskaya,O., Cantor,M., Sherlock,G., Brown,P., Hastie,T., Tib-
shirani,R., Botstein,D. and Altman,R. (2001) Missing value

estimation methods for DNA microarrays.Bioinformatics, 17,
520–525.

Tsuda,K., Kawanabe,M. and Müller,K.-R. (2003) Clustering with
the Fisher score. InAdvances in Neural Information Processing
Systems. Morgan Kauffman (to appear).

Vapnik,V.N. (1998)Statistical Learning Theory. Adaptive and learn-
ing systems for signal processing, communications, and control.
Wiley, New York.

Yeung,K.Y., Haynor,D.R. and Ruzzo,W.L. (2000) Validating clus-
tering for gene expression data. Technical Report UW-CSE-
00-01-01, University of Washington.

2104

