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ABSTRACT

Motivation: Unsupervised analysis of microarray gene expres-
sion data attempts to find biologically significant patterns
within a given collection of expression measurements. For
example, hierarchical clustering can be applied to expres-
sion profiles of genes across multiple experiments, identifying
groups of genes that share similiar expression profiles. Previ-
ous work using the support vector machine supervised learn-
ing algorithm with microarray data suggests that higher-order
features, such as pairwise and tertiary correlations across mul-
tiple experiments, may provide significant benefit in learning
to recognize classes of co-expressed genes.

Results: We describe a generalization of the hierarchical clus-
tering algorithm that efficiently incorporates these higher-order
features by using a kernel function to map the data into a
high-dimensional feature space. We then evaluate the util-
ity of the kernel hierarchical clustering algorithm using both
internal and external validation. The experiments demonstrate
that the kernel representation itself is insufficient to provide
improved clustering performance. We conclude that mapping
gene expression data into a high-dimensional feature space
is only a good idea when combined with a learning algorithm,
such as the support vector machine that does not suffer from
the curse of dimensionality.

Availability: Supplementary data at www.cs.columbia.edu/
compbio/hiclust. Software source code available by request.
Contact: jg22@columbia.edu

INTRODUCTION

Finding structure in large data sets is a venerable, well-studie
problem that has recently received an explosion of interesy’
from biologists using microarray expression measurement
technology. Eisert al. (1998) popularized the use of hier-
archical clustering (Duda and Hart, 1973) to find groups o
similarly expressed genes or gene expression experimen
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This algorithm has several well-known drawbacks, most not-
ably that it is statistically unstable in the face of small perturba-
tions of the data. Therefore, many subsequent papers have
suggested applying alternate clustering algorithms to micro-
array data. Some of these algorithms were adopted from prior
literature in other fields and some were developed specifically
for microarray data (see Slonim, 2002, for a review). How-
ever, the standard hierarchical clustering algorithm remains
among the most widely used in this field, due to its simpli-
City, its intuitive, tree-structured output and the availability of
several free software tools.

Concurrently, within the field of machine learning, much
recent research has focused upon a class of algorithms that
employ so-calledkernel functions to operate efficiently on
a non-linearly transformed version of a given data set. The
motivation for this transformation is simple: the features,
or variables, within a given data set often share complex,
non-linear relationships. Say that you are looking for a cor-
relation between gene expression levels and some clinical
variable. It may be the case that no single gene expression
level is directly related to the clinical variable of interest,
but a pair of genes is strongly predictive (see Table 1). In
this situation, the product of the expression levels of the
two genes is much more informative than the expression
level of either gene by itself. A simple solution is to mul-
tiply all pairs of gene expression values, and operate on
this transformed data set. However, when an expression
data set contains 10000 genes, looking at all pairs of genes
results in a data set of 100000000 genes. Analyzing such
a large data set is computationally expensive, and only gets
orse if we are interested in tertiary, rather than pairwise,
orrelations.

The kernel trick allows higher-order features, such as pair-

]a/vise or higher correlations, to be analyzed efficiently. Any
@Igorithm can be ‘kernelized’ if the algorithm can be stated

SO that each vector of input data only appears within a dot
product operation. The non-linear version of the algorithm
is then created by replacing the normal dot product with
an alternate function, known as a kernel function. Mercer’s
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Tz_ab_le 1 A non-linear relationship between gene expression level and ghe goodness of the clustering results internally, by predict-
clinical variable ing the cluster membership of held-out examples, as well
as externally, by comparing clusters with functional annota-

Experiment tions. Using either measure, the kernel-derived clusters are
1 2 3 4 sometimes better and sometimes worse than the standard
clusters. This work is therefore a cautionary tale. We hypo-
Gene 1 Low High Low High  thesize that the advantage offered by the kernel trick may
Gene 2 Low Low High High

be fairly specific to the SVM and other large margin clas-
sifiers that do not suffer dramatically from the curse of
glimensionality.

Clinical variable False True True False

Neither gene’s expression level is sufficient to predict the Boolean variable, but the twi
expression levels together are predictive.

ALGORITHM

theorem (Cristianini and Shawe-Taylor, 2000) guarantees thagtandard hierarchical clustering
as long as the kernel function exhibits certain mathematAgglomerative hierarchical clustering consists of initially
ical properties (namely, that it is positive definite), then thetreating each input point as a cluster and then iteratively merg-
algorithm implicitly operates in a higher-dimensional space.ing the two clusters that are closest together. This iterative
For example, if the standard dot production operation ismerging procedure continues until all points have been merged
replaced by the square of the dot product, i.&K{{X,Y) = into a single cluster. The order of mergers determines the topo-
(X - Y)?, then we can prove that the kernelized algorithm,logy of a binary tree, which is the output of the algorithm.
although operating only on 10000 gene features, will yieldClusters can be derived by selecting subtrees from this tree.
the same results as if the non-kernelized algorithm were The primary difference among hierarchical clustering
given all 100 000 000 pairwise products of the gene featureslgorithms lies in the method of finding the closest pair of
The kernel trick saves the algorithm from the computationaklusters in line (3) of Figure 1. In this paper, we consider
expense of explicitly representing all of the features in thefour methods of measuring similarities among clusters. All
higher-dimensional space. are based on a common metric for measuring the similar-
The kernel trick was popularized in the context of supportity of a pair of points. In many applications, this point-wise
vector machine (SVM) learning (Vapnik, 1998). The SVMis a comparison is based upon a Euclidean distance. However,
supervised machine learning algorithm that is frequently usefbr comparing gene expression profiles, Eistal. (1998)
in a kernelized form. Subsequently, kernel versions of severamploy a modified version of the Pearson correlation coef-
other algorithms have been described, including Fisher’s linficient rather than the Euclidean distance. This modified
ear discriminant (Mikat al., 1999) and principal components correlationr (-, -) betweenX andY is
analysis (Scholkopdt al., 1997). The current work is particu-
larly motivated by a study that demonstrated the applicability FX,Y) = 2 XiYi 1)
of the SVM algorithm to learning gene classifications from (Z XZZ)(Z yl_Z)
microarray expression data (Browtal., 2000). In this paper,
the classification performance of the SVM improved consi- Using this metric, the similarity between a pair of clusters
derably when a non-linear kernel function was inserted inta4 andB can be computed in four ways. In single-link cluster-
the algorithm. This result suggests that gene expression daiag, the similarity betweem and 5 is simply the maximum
contains informative, higher-order features which may not besimilarity between a pointin clustet and a pointin clustef.
apparentin the raw data. Such relationships are not surprisingomplete-link clustering is the same, but using the minimum
given the complex network of gene regulatory interactions thapoint-wise similarity. Average-link clustering, as the name
give rise to the observed expression data. suggests, uses the mean of all pairwise similarities between
In this paper, therefore, we demonstrate how to apphclusters. The fourth algorithm, centroid-link clustering, com-
the kernel trick to the hierarchical clustering algorithm. Theputes the distance between clusters by first representing each
resulting algorithm is nearly as efficient as standard hierarcheluster via a centroid or mean vector, each component of
ical clustering, and can operate in very high-dimensionalwhich is the mean of the corresponding components across
implicit feature spaces. We then empirically validate theall vectors in the cluster. The inter-cluster similarity is the
utility of the resulting algorithm on the task of cluster- similarity of these two mean vectors, computed according to
ing genes based upon the microarray expression profile&€quation (1).
The results are not encouraging. In short, although ker- In the first three of these four clustering algorithms, the
nel hierarchical clustering does produce different resultsnerging of two clusters [line (4) in Fig. 1] is trivial. For
from standard hierarchical clustering, those results are ndhe centroid-link algorithm, the merging can be accomp-
necessarily any better. Using multiple data sets, we evaluateshed efficiently by combining previously computed mean
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(1) Initialize every point as a cluster A B A+B
(2)  while morethan one cluster remains S
() Find the closest pair of clusters Al'm § A+B| =
(4) Merge the two clusters [0 Updated with Equation 8 §
(5) end B Updated with Equation 9 §
[J Not updated CESSSSSSSSSS ; ‘‘‘‘
Fig. 1. Generic agglomerative hierarchical clustering algorithm, = Ne'oneerrelevant S
The differences among hierarchical clustering algorithms lie in the
methods of calculating the distance between clusters in line (3). Before After
Fig. 2. Kernel update procedure.
vectors. Given two such vectord, = A1, A, ..., A, and
B = B1, Bo, ..., By, representing clusters of sizesaandb,
respectively, the algorithm computes the new mean vettor for cluster3. Then the corresponding kernel matrix entry is
by taking the weighted mean of each element: K(A,B) = ®(A)- ®(B). We want to mergel and3 to form
a new clusterd containinga + b vectors.
A; = adi +bB; ) To update the kernel matrix, we need to deal with two cases.
a+b The first is the kernel value between the merged cludtend
some other clustef. Following Equation (2), we can write
Kernel hierarchical clustering the desired kernel value in terms of known kernel values:
T_he kernel version of hierarchical clus_termg uses the _kernel . aK(A.C) + bK (B.C)
trick to map implicitly the gene expression data into a higher- K(A, C) = (4)

dimensional feature space. Clustering then takes place in the a+b

feature space. Note that the functidnthat maps from the  quation (4) is the update rule for off-diagonal elements in

input space to the feature space may not be known, but SuGRe kernel matrix. For diagonal elements, the expression is as
a function is guaranteed to exist for any valid kernel func-fq|iows:

tion. For centroid-link hierarchical clustering, this implicit
mapping occurs prior to the computation of centroids. The
centroid of a cluster in feature space is not the same as the

mapped version of the centroid computed in the input space. ) o )
In order to produce a kernel version of the hierarchical clusEguations (4) and (5) are sufficient to update the kernel matrix

tering algorithm, we must be able to state the entire algorithn@fter the merger of clusterd and 5. Each update requires

in terms of dot products between pairs of input vectorsonstant time and updz_mng the entire kern_el matrix requires
This transformation is straightforward for both the EuclideanModifying O (m) values in the matrix, where is the number
distance (results not shown) and the modified Pearson correl&f clusters. The kernel matrix update procedure is illustrated
tion. The modified Pearson correlation [Equation (1)] can bdn Figure 2.

re-stated in terms of dot products as follows:

a?K (A, A) + 2abK (A, B) + b%K (B, B)
a2+ 2ab + b?

K(A A = (5)

. X.Y VALIDATION OF CLUSTERING METHODS
rX,Y) = X -X)(¥ - Y) 4 validation techniques for clustering methods fall into two

categories: internal validation measures the quality of clusters
The kernel version of the algorithm employs Equation (3),pased only upon the data, whereas external validation meas-
with the kernel functionk (-, -) substituted in place of each yres the agreement between the derived clusters and some
dot product operation. external gold standard (Jain and Dubes, 1988). To evaluate

In addition to computing distances or correlations, thekernel hierarchical clustering, we use one internal validation
kernel version of centroid-link hierarchical clustering requiresmethod and one external validation method.

that the cluster merging operation be carried out in terms L

of dot product operations. We show inductively how this | nternal validation

update step works. The base case occurs prior to any mefhe internal validation method measures the ‘learnability’ of
ging, when the kernel matriX is computed for the entire a given set of clusters. Much work has been done evaluating
data set. Each vector in the data set is a cluster of size TJustering of gene expression data (Sharan and Shamir, 2000;
and the vector itself is trivially equal to the centroid of this Yeunget al., 2000); however, most such metrics require that
single-vector cluster. For the inductive step, we assume thahe clustering be a complete partition. We specifically wanted
the kernel matrixk contains kernel values between pairs of to avoid a metric that evaluates the entire clustering because
cluster means. Let clustet, represented (in the feature space)only the most prominent clusters in a given expression set
by centroid vectorb (A), consist ofa vectors, and similarly are typically of interest. Given the relatively noisy character
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of microarray expression data, the more subtle clusters aresble2. Data sets used in this study
likely to be indistinguishable from the noise.
We propose a learnability approach to internal cluster..

. ' . ) . Source Genes Annot Arrays
validation that determines the fithess of a given cluster by
measuring the dlﬁerence betwgen the structure of the clustgy, . Eiseret al., 1998 6070 2465 79
and a structural prior. Our prior assumes that clusters ar@east SMD 6112 2404 441
spherical in shape. This assumption corresponds to the learMouse brain Sandbes al., 2001 10000 6437 24
ing bias of thek-nearest neighbor classifiet-\N). k--NN is ~ Leukemia Golutetal., 1999 7129 4963 72
a supervised learning algorithm that takes as input a collec=0lon cancer  Aloretal., 2000 2000 N/A 62

tion of labeledz-dimensional points. The algorithm assigns c ) . , .

- X C X olumn two lists the total number of genes included on the arrays; column three lists the
to unclassified points the label of the majority ofitsiearest  number of genes that are annotated in the MYGD (yeast) or the Gene Ontology (mouse
neighbors. We can imagine a ball, or hypersphere, in the inpuirain and leukemia).
space centered at the unlabeled point, with radius equal to the
distance to thé&th nearest neighbor. The unlabeled point is
assigned the label of the majority of the labeled points within
the hypersphere. product of the measures. As mentioned above, we do not

The figure of merit we suggest is a learnability scoreexpect every gene within a microarray data set to fall into a
obtained by cross validation usidgNN. The score is related biologically meaningful cluster. Therefore, in order to com-
to the jackknife resampling idea that motivates the figures opare two different hierarchical clustering trees, we compute
merit described by Yeung al. (2000). In that work, the jack- and compare the scores of the top ten non-overlapping clusters
knife is performed by iteratively leaving out a single featurefrom each tree.
in each vector of the data set being clustered, and then com-
paring the resulting clusterings. In this work, we use 2-fold -
cross validation to evaluate the quality of a cluster. Ratherthaﬁ)(ternal validation
holding out a single vector for testing, we withhold half of the The second validation method compares the given tree to an
data, chosen at random. This technique reduces dependerfdéernal gold standard. In this method, the gold standard con-
problems caused by overlap of the training sets in the jacksists of a large collection of possibly overlapping clusters.
knife technique. We perform five replications of 2-fold cross The clusters are identified using prior knowledge of the data,
validation to overcome variance due to the random samplinglthough not every cluster must appear in the data. In the
(Dietterich, 1998; Alpaydin, 1999). evaluation, we aim to identify subtrees within the hierarch-

For a given hierarchical clustering tree, our approach conical clustering tree that correspond to classes within the gold
siders each subtree as a candidate cluster. We evaluate egdfndard. This is accomplished by computing PPR scores for
cluster individually and use the membership status of eacRach subtree with respect to each gold standard class. For each
input vector to produce a binary labeling of the data. The dat&core, the maximal score for each cluster is selected as the best
and labels are random|y partitioned into two rough|y equa|matCh. As in the internal vaIidation, we consider onIy the top
sized sets. Each set, in turn, is used as the labeled training g&n non-overlapping clusters from each tree.
while the remaining set is used as unlabeled test dali\
is used to classify the test set. After this procedure, each point
is categorized as a true p_ositive (TPX#NN predicts that it METHODS
belongs to the cluster and it actually does belong to the cluster
a false positive (FP) ik-NN places it in the cluster when it Data
does not belong there, a true negative (TN-NIN correctly ~ The experiments compare clustering performance across five
places it outside the cluster and a false negative (FRNN sets of gene expression data, summarized in Table 2. The
incorrectly places it outside the cluster. The entire process ifirst set, from Eiseret al., consists of 79 yeast microarray
repeated five times. experiments from varying conditions, including the diauxic

For each candidate class, the number of TPs, FPs, TNshift (DeRisiet al., 1997), the mitotic cell division cycle
and FNs can be combined into a performance metric. For thi€Spellmanet al., 1998), sporulation (Chat al., 1998), and
metric, we use the product of precision and recall (PPR). Infemperature and reducing shocks. Each array contains 6070
terms of TP, FP, and FN counts, the precision is expressegenes, of which Eisest al. identified 2465 for which the
as TP(TP+ FP), and recall is expressed as/{PP + FN).  function is known a priori. The annotations for these genes
Precision reflects how well the classifier rejects members oére derived from the MIPS Yeast Genome Database (MYGD)
the negative class. Recall reflects how well a classifier idenfMeweset al., 2000). All 6070 genes are used for internal val-
tifies the members of the positive class. Ideally, the classifieidation, but only the 2465 known genes are used for external
would do well at both of these, which motivates taking thevalidation.
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The second data set is an expanded version of th@&able 3. Direct comparison of trees computed using standard and kernel-
first. The set consists of 441 yeast experiments colPased centroid-link hierarchical clustering
lected from the Stanford Microarray Database (genome-

www5.stanford.edu/MicroArray/SMD). This data set contains POLY-2 POLY-3 RBF
6112 genes, with missing values imputed usingrearest
neighbor approach (Troyanskaghal., 2001). Annotations Yeast-79 26.5 26.6 39.7
are again derived from MYGD, resulting in a set of 2404:/'6&9-5'\/”3 32'2 gg-g g?-;
annotated genes. ouse : : :
The rengining three data sets are from studies of mouse a pgukemia >79 °6.5 66.7
lon 64.3 70.0 76.3

human. For these data sets, gene classifications are extrac-

ted from the Gene Ontology Consortium (2000). The MOUS&ach number in the table is the percentage of branches in the given kernel tree that do
data set (Sandberg[ al., 2000) consists of 24 Af-fymet_ not appear in the corresponding standard tree.

rix arrays, corresponding to six brain regions in two mouse

strains with two-fold replication of each experiment. The firsttapie 4. Comparison of internal validation results

human data set (Golu#i al., 1999) consists of data from 72
human patients, each exhibiting one of two different type
of acute leukemia. The final data set (Alehal., 1999)
consists of 62 Affymetrix array experiments performed on

SAlgorithm Data set POLY-1 POLY-2 POLY-3 RBF

) Centroid Yeast-79 0.796 0.796 0.800 0.258
40 colon cancer tumors and 20 colon tissue samples from Yeast-SMD  0.708 0.709 0.742 0.093
normal patients. Only the expression levels from the 2000 Mouse 0.618 0.608 0.650 0.514
genes with highest minimal expression level across samples Leukemia 0.751 0.728 0.742 0.472
are publicly available. All 2000 genes are used in the exper- Colon 0.865 0.855 0.826 0.854
iments reported here. For this data set, no external validatiofierage YYea?t_S?I\?ID 00%88111 00%77518 00%88124 0062576
H H H H east- . . . .

is p_erformed because functional annotations are not readily Mouse 0.654 0.604 0.661 0571
available. Leukemia  0.763 0.721 0.761 0.457
Implementation Colon 0.880 0.878 0.880 0.862
. . . . . ingle Yeast-79 0.769 0.769 0.769 0.258

The kernel hierarchical clustering algorithm was |mplemente0S 9 YeastSMD  0.639 0635 0639 0.093
in C++. The implementation was validated by compar- Mouse 0.356 0.314 0.356 0.340
ing the output to that produced by Cluster (rana.lbl.gov/ Leukemia 0.565 0.534 0.565 0.453
EisenSoftware.htm). The software is available upon request Colon 0.853 0.853 0.853 0.849
from the authors. Complete Yeast-79 0.751 0.742 0.751 0.321
Yeast-SMD  0.743 0.743 0.743 0.047

Kernel functions Mouse 0.680 0.601 0.680 0.509
; ; ; Leukemia 0.692 0.668 0.692 0.411

In any kernelized algorithm, the choice of kernel func- Colon 0.854 0.854 0.854 0.792

tion must be made a priori. Because the kernel function

determines the space In which the algonthm will OperateEighty trees were generated, corresponding to four clustering algorithms, four kernels,

this choice is critical. Unfortunately, little is known about and five data sets. For each tree, 10 subtrees were selected that maximize the product of

how best to select a kernel function for a given data Se?recision and recall. In the table, each entry is the average PPR across these ten subtrees.
. . . Due to computational constraints, the PPR scores for the mouse data set are based on

and algorlthm. Accordlngly, we adopt the standard emplr-3000 genes chosen at random from the 6437 annotated genes.

ical approach of experimenting with several common kernel

functions. First, we use the first-degree polynomial ker- . o
nel (POLY-1), K(X,Y) = X - Y. This kernel was chosen @and other complex decision surfaces (Cristianini and Shawe-

as a baseline, because it amounts to not appyling the kefaylor, 2000). The widtlr is setto 0.01 in the results reported
nel trick: for POLY-1, the input space and feature space ar@ere. In the online supplement, results from additional values
identical. The POLY-2 and POLY-3 kernels akgX,v) =  Of o are reported.

(X - Y)+12andK(X,Y) = [(X - Y) + 1]3, respectively.

The feature spaces induced by these kernels include featurggeSULTS

corresponding to all pairs or triples of features in the input
space. Finally, the radial basis function (RBF) kernel

Our experiments suggest that, although kernel hierarchical
clustering produces trees whose topology differs depending
K(X,Y) = e |IX-YI?/@20?) (6) upon the choice of kernel function, these differences are not
likely to provide useful biological insight.
is chosen for its ability to learn complex mappings. The We firstverify thatthe hierarchical clustering algorithm pro-
RBF kernel function can learn, e.g., checkerboard patternduces significantly different trees, depending upon the kernel
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Table 5. Comparison of three kernels across five MYGD classes in the 79-experiment yeast data set using centroid-link clustering

POLY-1 POLY-2 POLY-3 RBF
Class Size FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN
TCA 17 0 14 3 2448 0 14 3 2448 1 13 4 2447 2008 0 17 440
Resp 30 1 17 13 2434 0 17 13 2435 1 17 13 2434 2269 0 30 166
Ribo 121 12 15 106 2332 14 14 107 2330 14 15 106 2330 5 28 93 2339
Prot 35 1 9 26 2429 3 7 28 2427 7 5 30 2423 2267 0 35 163
Hist 11 0 2 9 2454 0 2 9 2454 0 2 9 2454 0 4 7 2454

The number of TPs, FPs, TNs and FNs is shown for five MYGD classes that were identified byttkdror each kernel and class, the subtree was selected that maximizes the
PPR. The classes are tricarboxylic acid cycle, respiration chain complex, ribosomal proteins, proteasome, and histones.

function. For each data set, we compare the binary tree prorable6. Summary of external validation results
duced by standard hierarchical clustering with corresponding
trees produced using non-linear kernel functions. Any tree CaRqorithm

Data set POLY-1  POLY-2 POLY-3 RBF
be described as a set of branches, in which each branch divides
the leaves into two partitions. Two hierarchical clustering tree$-qi0ig Yeast-79 0.546 0.549 0.541 0.426
derived from the same data can therefore be compared with Yeast-SMD  0.454 0.457 0.445 0.259
one another by counting the number of branches by which they Mouse 0.364 0.358 0.359 0.358
differ. For some kernels and some types of clustering, the ker- Leukemia ~ 0.575 0.575 0.575 0.55
nelization has no effect. In particular, the POLY-3 kernel doeg\verage Yeast-79 0.549 0.552 0.540 0.423
not change the similarity ranking of genes; hence, the kernel YeastSMD  0.523 0.527 0.520 0.259
) . . . Mouse 0.367 0.367 0.367 0.363
and qon—kemel versions of the sm_gle-l!nk and complete-link Leukemia 0616 0616 0616 055
algorithms yield identical results with this kernel (see the sup—Single Veast.79 0.523 0.523 0.523 0.427
plementary data). In contrast, for= 0.01, the RBF kernel Yeast-SMD  0.442 0.442 0.442 0.259
uniformly yields quite different results for all four clustering Mouse 0.350 0.350 0.350 0.350
algorithms. Other settings yield smaller differences. Table 3 Leukemia 0.575 0.575 0.575 0.55
summarizes the comparisons for centroid-link clustering, inComplete ~ Yeast-79 0.489 0.461 0.489 0.279
terms of the percentage of branches that differ between pairs Yeast-SMD  0.517 0.516 0.516 0.259
of trees. In all cases;25% of the branches in the standard Mouse 0.363 0.363 0.363 0.363
Leukemia 0.614 0.614 0.614 0.564

hierarchical clustering tree do not appear in the corresponding
kernel versions. Overall, these results show that keme"ZEach entry in the table is the average PPR score across the top ten classes found in a
ing the hierarchical clustering algorithm often produces quitgyiven hierarchical clustering tree. Results are given for each kernel function and each
different trees. clustering algorithm.

Table 4 shows the results of internal validation of the various
clusterings using the-nearest neighbor approach. Although
the PPR scores vary across the different kernel functions, thewes the kernel function is changed, except using the RBF kernel.
is no clear trend. If kernel hierarchical clustering provided aln most cases, using a polynomial kernel results in a change
benefit, then we would expect the highest PPR scoresto appesafr only a few misclassifications. The RBF results show that
in the POLY-2, POLY-3 and RBF columns. This is not alwaysthis version of the uniformly algorithm fails to find accur-
the case. ate clusters. These results are strongly dependent upon the

For external validation, we first return to the five genewidth o in Equation (6). For this data set, a larger value
expression classes that were identified by Eiseml. as  of o yields results that are much closer to the results from
clustering well in the Yeast-79 data set. These classes wethe non-kernelized algorithm (see supplementary results). In
also the subject of SVM analysis in the paper by Braval. no case, however, does the kernelized algorithm offer much
In Table 5, the numbers of true and false positives and negamprovement over the standard algorithm.
tives are provided for each of these classes and for each kernelSimilarly, the top-scoring classes for each of the data sets
function. The table lists results for centroid-link clustering; do not show any clear trends with respect to the choice of the
results from the other clustering algorithms are similar (seéernel function. Table 6 lists the average PPR scores for all
the supplementary data). Overall, the classification performfour data sets, four linkage criteria and four kernel functions.
ance of the clustering algorithm does not change dramaticallpetailed listings of the individual class scores are provided
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