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Abstract

An important goal in bioinformatics is determining the homology
and function of proteins from their sequences. Pairwise sequence
similarity algorithms are often employed for this purpose. This
paper describes a method for improving the accuracy of such algo-
rithms using knowledge about families of proteins. The method re-
quires a library of protein families against which to compare query
sequences. A standard pairwise similarity search algorithm is used
to search the library with the query, and a new variant of the Fam-
ily Pairwise Search (FPS) algorithm converts the results into a list
sorted by theE-values of the matches between the query and the
families. TheE-value of each query-family match is calculated us-
ing a statistical distribution introduced here that describes the be-
havior of the product of thep-values ofcorrelated random vari-
ables. We also describe an algorithm (ESIZE) for estimating the
single parameter of this distribution. This parameter summarizes
the amount of correlation among thep-values being multiplied,
which corresponds, in this application, to the divergence among
the sequences in a family. We show empirically that theE-values
reported by this variant of FPS are accurate and that the method
has significantly superior classification accuracy than using the best
pairwisep-value as the query-family match score. The new al-
gorithm is closely related to an earlier version of FPS that com-
bines similarity scores by averaging “bit scores”, which has been
shown to have superior classification performance compared with
several model-based methods (motifs, HMMs), but lacksE-values
and their concomitant advantages.

1 Introduction

Protein sequences and protein domains can be grouped into fam-
ilies according to function, structure or homology. Recent work
[Grundy, 1998b; Grundy, 1998a] describes the Family Pairwise
Search (FPS) algorithm for searching a database of sequences using
a set of family member sequences as the query. The FPS algorithm
computes the match between a family and a sequence by combining
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the pairwise match scores (computed using a sequence comparison
method such as the Smith-Waterman algorithm[Smith and Water-
man, 1981]) of the sequence and each member of the family. The
FPS algorithm was shown to be better at classifying a database of
sequences than searching with a single family member or with a
statistical model of the family.

In this paper we study the inverse problem—searching a library
of protein families using a single sequence as the query—using a
variant of the FPS algorithm that uses a scoring function for which
accuratep-values can be estimated. Throughout this paper, we will
refer to this version of FPS as the POP (product ofp-values) algo-
rithm because it combines the pairwise scores by taking the product
of theirp-values. The input to the POP algorithm consists of a sin-
gle query sequence and a sequence family library. The library is
comprised of a database of sequences (or sequence fragments), a
dictionary that lists the family (or families) to which each sequence
belongs, and, for each family, the value of the parameter of the dis-
tribution of the product ofp-values. The output of POP is the list
of families sorted by theE-value of the match of the query to the
family.

The POP algorithm can be implemented using any pairwise
search algorithm that returns accuratep-values. The query is
searched against the database using the pairwise search algorithm,
and the product ofp-values of the matches between the query and
each member of a family is converted to ap-value for the overall
match to the family using the distribution described below. Con-
verting the combined score (product ofp-values) to ap-value al-
lows matches between the query and families with different num-
bers of members to be directly compared, since it puts all scores
on a common scale. Thisp-value is then multiplied by the number
of families in the library to give theE-value of the match, which
can be used to estimate the expected number of false positives at
or above that match in the list of matching families. The single pa-
rameter for the distribution of the product ofp-values is computed
for each family using the ESIZE algorithm (described below) when
the library is built.

We study two aspects of the POP algorithm to determine its
reliability and accuracy. First, we show that it returns reliableE-
values that accurately predict the number of false positives. This
verifies that the distribution function we propose for the product of
correlatedp-values is appropriate in this application. Second, we
study the sensitivity versus selectivity tradeoff of POP. We show
that POP has uniformly better coverage (sensitivity) at any level
of selectivity (false positive rate) when compared with using the
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best match (minimump-value match) between the query and any
member of a family (the MINP algorithm, described below). This
demonstrates that POP effectively combines the information con-
tained in the matches between the query and the family members
into a single score that more accurately classifies the query than
just using the best match. We substantiate this result by show-
ing that the improvement in classification quality, as measured by
the Receiver Operating Characteristic (ROC)[Gribskov and Robin-
son, 1996]), is highly statistically significant.

The remainder of this paper is organized as follows. First, we
describe our method for estimating the distribution of the product of
correlatedp-values. Second we describe the methods and databases
we use for testing the POP algorithm, as well as the results of those
tests. Finally, we discuss the POP algorithm in relation to other
methods of family classification.

2 Distribution of the product of correlated p-values

The Family Pairwise Search algorithm computes, for a given query
sequence and family, a set ofp-values for the matches between the
query and each sequence in a family. We would like to combine the
information contained in thesep-values into a single score that ac-
curately reflects the likelihood that the query belongs to the family
and for which we can calculate the statistical distribution. Previ-
ous work on scoring the match of a query to a set of motifs[Bailey
and Gribskov, 1998] shows that the product of thep-values satis-
fies both criteria as long as thep-values are independent. Unfortu-
nately, thep-values for matches between a query and members of
a sequence family are clearly correlated, so the formula given by
Bailey and Gribskov [1998] for the distribution of the product,Zn,
of n independentpairwisep-values,

Pr(Zn � p) � p

n�1X
i=0

(� ln p)i

i!
; (1)

does not apply. On the other hand, when all of the family member
sequences are completely dependent (i.e., identical), thep-value of
the product is just the value of the identical pairwisep-values:

Pr(Zn � p) = p1=n: (2)

In that case, it is as though the family only contains one sequence,
so n � 1 of the pairwisep-values can be ignored. Thus, Eqn. 1
and 2 apply to two extreme cases: when the family consists ofn
independent sequences and when it effectively consists of a sin-
gle sequence. Real sequence families will lie between these two
extremes, displaying a partial dependence among the sequences
in the family. For these intermediate cases, interpolating between
Eqn. 1 and 2 suggests the following equation for the distribution of
correlated p-values:

Pr(Zn � p) � py
bmc�1X
i=0

(� ln py)i

i!
+

py(m� bmc)
(� ln py)bmc

bmc!
(3)

wheren is the number of members in the family,Zn is the product
of then pairwisep-values,m is the “effective size” of the family,
and y = m=n. The parameterm can range between 1 and the
actual family size,n. Note that Eqn. 3 converges to Eqn. 2 asm!
1 and to Eqn. 1 asm! n.

The following algorithm, which we call “ESIZE”, estimates
the effective family size,m, in Eqn. 3 using random sequences as
queries. It makes use of the fact that the expected value of theith
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Figure 1:Accuracy of the distribution of the product of corre-
latedp-values.The plot shows a typical example of the distribution
of p-values computed by the ESIZE algorithm for a single family
containing 12 sequences. See text for details.

smallest ofn p-values isi=(n+1). The ESIZE algorithm estimates
m by minimizing an RMS (root mean squared) error function that
gives equal weight to equal proportional errors in the observed and
predictedp-values:

E(m) =

vuut nX
i=1

[log(pi(m))� log(i=(n+ 1))]2; (4)

wherepi(m) is theith largestp-value (of the product ofp-values)
among matches between the given family andn random query se-
quences.

The ESIZE algorithm searches for the value ofm that mini-
mizes the error function (Eqn. 4) using bracketing search[Presset
al., 1986]. This works well because the error function generally has
a single minimum (data not shown). We have found that approxi-
mately 1000 random scores for each family member are sufficient
for good estimates ofm. To generate these scores, the same pair-
wise search algorithm as will be employed with POP is used with
1000 shuffled, randomly selected SWISSPROT sequences as the
queries.

Fig. 1 shows a typical example of the fit of the distribution to
observed data. The family contains 12 sequences, but the effective
family size is estimated by the ESIZE algorithm to be 7.15. The
average RMS error is 0.14 for this value ofm. The data consists of
POPp-values for 1000 shuffled Swissprot sequence queries against
a single family in the SCOP[Murzin et al., 1995] database. In the
next section, we give further evidence that the distribution in Eqn. 3
holds well in practice.

3 Results

To evaluate the POP algorithm, we test it for the accuracy of the
E-values it reports and for its sensitivity versus selectivity trade-
off. For the selectivity-sensitivity test, we compare the performance
of POP with another variant of FPS which we will refer to as the
MINP (minimump-value) algorithm. The MINP algorithm sets the
match score between a query and a family as the minimump-value
among all the pairwisep-values between the query and members
of the family. As the underlying pairwise search algorithm, we use
the Smith-Waterman (S-W) algorithm implemented on a Bioccel-
erator BioXL/P processor[Compugen, Ltd., 1998] with the default
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Figure 2:Accurate prediction of false positive rates by POPE-
values.The plot shows the relationship betweenE-value and false
positives per query for 1000 random sequence queries against all
SCOP families with two or more members. Central line is the ideal,
upper and lower lines are factors of two away.

gap opening penalty and extension penalties of 10 and 0.05, re-
spectively. We built the sequence family library from the “super-
families” in the SCOP[Murzin et al., 1995] database (version 1.37)
of structurally classified proteins. The database is purged to contain
only sequences with less than 40% sequence identity as described
in Brenneret al. [1998].

We measure the reliability of the POPE-values by assessing
the number of false positives per query observed at a givenE-value.
Each of 1000 shuffled SWISSPROT sequences is used as a query
to POP to search the family library. The combined results are then
sorted byE-value.1 Fig. 2 showsE-value as a function of false
positives per query (i=n, wherei is the rank andn is the number of
queries). Ideally, all points should lie near the linex = y (middle
line). In Fig. 2, all of the over 200,000E-values correspond to
false positive rates within a factor of 2 of the theoretical rate (outer
lines). This shows that theE-values reported by POP are accurate.

Fig. 3 shows that the POP gives consistently better sensitivity
than the MINP algorithm. In this cross-validated test, two family li-
braries are built by splitting each family in half. Families with only
one member are removed because POP and MINP behave identi-
cally when there is only one sequence in the family definition. This
leaves approximately 120 families in in each half-library. The ef-
fective family sizes are then estimated separately for each library
using the ESIZE algorithm and a set of random queries. Sequences
in one half-library are then used as queries against the other half-
library. Following the methodology of Brenneret al.[1998], all the
search results are sorted together byE-value. The figure shows,
for each point in the sorted list, the fraction of queries (above that
point) as a function of the number of false positives (above that
point) divided by the number of queries. In this test, the POP al-
gorithm consistently gives better sensitivity, or coverage, at a given
error rate compared to the MINP algorithm. For example, for an
error rate of one false positive per query, the coverage using POP
is about 9% higher than using MINP. SinceE-value is such a good
predictor of false positive rate, as was shown in Fig. 2, the coverage
at anE-value of 1.0 (or any other value) can be read directly from
the plot in Fig. 3.

1The random queries are distinct from the ones used in computing the effective
family sizes. For both sets of random sequences, the SEG algorithm[Wootton and
Federhen, 1996] is used to remove regions with low information content after shuffling
the letters in the sequences.
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Figure 3:Improvement in classification accuracy using the POP
algorithm. The plot shows the cross-validated fraction of correct
query-family relationships found at different false positive rates per
query for all 1434 queries against the split SCOP database.

The superior classification performance of POP is further ver-
ified using ROC analysis. The area under the ROC curve (“ROC
number”) gives a picture of the complete tradeoff between sensitiv-
ity and selectivity, since it integrates the sensitivity of a search over
the complete range of possible selectivity values. The ROC num-
ber is computed for each query using the same data as was used
to construct Fig. 3. Pairwise comparisons of these ROC numbers
using a two-tailed signed rank test[Snedecor and Cochran, 1980;
Henikoff and Henikoff, 1997; Salzberg, 1997] rejects the null hy-
pothesis that POP and MINP give statistically similar classification
accuracy. The rank sum for POP is larger, and the test is significant
at the 0.01 level. In these ROC comparisons, POP has higher ROC
number for 140 queries and MINP for 92 queries.

The POP algorithm also has better classification performance
compared to the MINP algorithm using PROSITE families to build
the family library. We determined this by repeating the two cross-
validated classification accuracy analyses described above using all
1338 families in the PROSITE[Bairoch, 1995] Release 15 database
(data not shown). Using the same signed rank comparison of ROC
numbers, classification performance of the POP algorithm was sig-
nificantly better than that of MINP.

Using thep-value of the combined score in MINP effectively
normalizes for the different number of members in each family.
This is not done in the MINP algorithm, so one would expect erro-
neous matches to large families to contribute strongly to the error
rate. We also explored adding the calculation ofp-values to MINP
to see if this would improve its classification accuracy. A modi-
fied MINP algorithm, PMINP (p-value of the minimump-value),
calculates thep-value of the minimump-value,Mn, of the match
between the query and then family members using the equation

Pr(Mn � p) = 1� (1� p)n: (5)

Fig. 4, which was constructed analogously to Fig. 2, verifies that
this gives accuratep-values in practice. The sensitivity-selectivity
tradeoff improves relative to MINP as measured by plotting cov-
erage as a function of false-positives per query (data not shown).
ROC analysis of PMINP shows that POP is still significantly better,
this time at a significance level of better than10�7 according to the
signed rank test. It is clear, therefore, that the differences between
POP and MINP are not merely due to the effect of normalizing for
family size.
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Figure 4:Accurate prediction of false positive rates by PMINP
E-values. The plot shows the relationship betweenE-value and
false positives per query for 1000 random sequence queries against
all SCOP families with two or more members. Central line is the
ideal, upper and lower lines are factors of two away.

4 Discussion

The principal result of this work is an algorithm for searching a
library of proteins using a single sequence as a query. This al-
gorithm, POP, combines the information in each of the matches
between known members of a family and the query by taking the
product of thep-values of those matches. This method takes into
account the similarity of the query and each family member listed
in the library entry for the family. The intuition is that distant, true
homologs should have smallerp-value products than queries that
have merely chance similarities to a single family member. This
is borne out by the improvement in sensitivity versus selectivity of
POP compared with MINP, which uses thep-value of the single
best match as the match score. In addition, POP is likely to be far
less susceptible to falsely classified family members in the family
library than “best match” algorithms like MINP.

Previous work[Grundy, 1998b] studied several variants of fam-
ily pairwise search algorithms in the mode of searching using a sin-
gle family as the query against a database of sequences. The POP
algorithm can also be used in this mode. It should be possible to
modify the ESIZE algorithm to compute the effective size of the
query family “on the fly” from the low-scoring sequences in the
database being searched.2 The results of the pairwise similarity
searches of the database using each sequence in the query would
be combined and input to ESIZE to determine the parameter of the
product ofp-values distribution. This parameter and the pairwise
results would then be input to the POP algorithm.

The same previous work showed that family pairwise search
algorithms in the family versus sequence mode (rather than the se-
quence versus family library mode discussed here) have better clas-
sification performance than several common model-based methods
such as hidden Markov models (HMMs)[Eddy, 1995] and mo-
tifs [Bailey and Gribskov, 1998]. We expect these results to hold for
POP as well, since it combines scores similarly to one of these ver-
sions of FPS that averages the “bit scores”[Altschul et al., 1997]
of the individual matches. Bit scores (normalized for the lengths
of the query and target sequences) are related top-values by the

2This would be analogous to howp-values are computed for some pairwise simi-
larity search algorithms such as FASTA[Pearson, 1998].

equation

Pr(S � s) � 2�S; (6)

whereS is a length-normalized bit score. The relationship between
POPp-values and average bit scores can then be seen from

1

n

nX
i=1

si � � log
2

2
4 nY

i=1

pi

!1=n
3
5 ;

wheresi is the bit score for the match between the query and theith
member of then-member family, andpi is thep-value of that score.
Thus, the FPS algorithm using average bit scores sorts matches to
the query (approximately) by the geometric mean of the pairwise
matchp-values. This is the same as POP when all the members
of the family are identical (Eqn. 2) and gives excessively largep-
values in all other cases. FPS using average bit scores should there-
fore be less effective at utilizing all of the independent information
present in the members of most families.

It should not be inferred from the better classification perfor-
mance of the POP algorithm that model-based methods are not use-
ful. Classification is only one benefit of building and using statisti-
cal models of sequence families. Other benefits include the local-
ization and illumination of highly conserved, functionally and/or
structurally important patterns in in the sequences. Furthermore,
motif and HMM search algorithms identify the presence or absence
as well as the location and spacing of these features of interest in
the query sequence. HMM methods can also be used to multiply
align the query and the sequences in the family, giving further in-
sight into the relationship between the query and the family.

Another significant result of this work is a method for estimat-
ing the distribution of the product of non-independentp-values.
This method may find use in other applications where it is de-
sired to combine evidence from several correlated sources. The
parameter of this distribution is also interesting because of its in-
terpretation as the effective number of independentp-values. We
have interpreted it here as the effective size of the family, ranging
from 1 to the actual number of sequences in the set, depending on
the degree of divergence (independent information) among the se-
quences. This might be useful in other contexts, such as clustering,
since it gives a measure of the homogeneity or diversity of a set of
sequences.

The datasets and implementations of the algorithms described
in this paper are available at URL:

ftp://ftp.sdsc.edu/pub/sdsc/biology/fps/pop.
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