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Abstract

Background: Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in

computational biology. Much recent work has focused on developing new representations for protein sequences,

called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these

approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating

between a particular protein class and all other classes, few of these studies have addressed the real problem of

multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for

SVM-based protein classification available to the bioinformatics community.

Results: We present a new multi-class SVM-based protein fold and superfamily recognition system and web

server, called SVM-Fold. Our system uses an efficient implementation of a state-of-the-art string kernel for

sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact

matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class

problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary

one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores

that are not comparable, so that standard “one-vs-all” classification fails to perform well. Moreover, SVMs for
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classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not

try to combine these multiple predictions. To deal with these problems, our method learns relative weights

between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class

prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach

significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the

remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm

strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every

structure classification problem we consider.

Conclusions: By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the

SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition.

Background

Many statistical, homology-based methods have been developed for detecting protein structural classes

from protein primary sequence information alone. These methods can be categorized into three major

types: pairwise sequence comparison algorithms [1, 2], generative models for protein families [3, 4], and

discriminative classifiers [5–9]. Many recent studies have shown that discriminative classifiers, such as

support vector machines (SVMs), outperform the other two types of protein classification methods [10] in

the context of binary remote homology detection—prediction of whether a sequence belongs to a single

structural class or not—especially when incorporating unlabeled protein data [11, 12]. However, it is

uncertain how to combine these predictive binary classifiers properly in order to tackle the multi-class

problem of classifying protein sequences into one of many structural classes.

In this work, we present the SVM-Fold protein classification web server and software package, which

combines a state-of-the-art string kernel based on protein sequence profiles [13] with a novel multi-class

classification algorithm designed for the protein structural hierarchy. We outline the main machine learning

ideas behind our multi-class approach, which we call adaptive codes, and present large-scale benchmark

experiments based on the SCOP hierarchy [14] for two difficult protein classification problems: remote

homology detection and fold recognition. The SVM-Fold server is trained to perform multi-class SCOP

fold and superfamily recognition and is available at http://www.c2b2.columbia.edu/svm-fold/.
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In the machine learning literature, two main strategies have been devised to tackle multi-class prediction.

The first strategy is to train a “single machine” to directly produce multi-class outputs. This approach

includes multi-class formulations of the well-known binary support vector machine optimization

problem [15,16]. However, complex multi-class optimization problems are often computationally expensive

and impractical when the number of classes is large. A second and more tractable strategy is to solve a set

of binary classification problems and process the binary predictions to obtain a multi-class

prediction [17, 18]. This approach assigns to each test example a vector of real-valued discriminant scores

or binary prediction rule scores, which we call the output vector for the example. This second class of

methods includes widely-used approaches such as one-vs-all, all-vs-all, and error-correcting output codes.

In the standard one-vs-all approach, one trains N one-vs-the-rest classifiers to obtain a length-N output

vector and then predicts the class with the largest margin. Standard all-vs-all is similar, except that one

trains all pairwise binary classifiers to obtain a length N(N − 1)/2 output vector [17]. One can also

represent different classes by binary vectors or output codes in the output vector space1 and predict the

class based on which output code is closest to the binary output vector for the example [18, 19]. While this

approach, called error-correcting output codes (ECOC), generalizes the other standard methods, a recent

empirical study suggests that the one-vs-all approach performs as well or better in most cases [20].

One failing of one-vs-all is that it assumes that the margins of the component binary classifiers are

comparable, so that the individual classifier with the largest prediction corresponds to the best class. This

assumption is often invalid in practice and in particular for SVM classifiers, since SVM prediction scores

are not probabilistic and cannot be readily interpreted aa class conditional probabilities or converted to

p-values. One proposed method for computing probabilities from SVM outputs is to fit a sigmoid function

to the predicted margins for each classifier [21]. After this procedure, the output probabilities rather than

the margins are compared in one-vs-all. However, in many applications, the training data may be

insufficient to fit the sigmoids accurately, or the sigmoids may be poor models for the margin distributions.

Moreover, one-vs-all and the other standard output vector approaches do not take advantage of known

relationships between classes, such as hierarchical relationships in the protein structural taxonomy.

Here, we present a simple but effective multi-class method for protein fold recognition that combines the

predictions of state-of-the-art one-vs-the-rest SVM protein classifiers by learning in the output space. In

order to solve the problem that prediction scores from different classifiers are not on the same scale, we

solve an optimization problem to learn a weighting of the real-valued binary classifiers that make up the

1We will use the terms “output space” and “code space” interchangeably for the output vector space.
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components of the output code. Instead of using ad hoc or random output codes as in ECOC, we design

codes that are directly related to the structural hierarchy of a known taxonomy, such as the manually

curated Structural Classification of Proteins (SCOP) [14], with components that correspond to fold and

superfamily detectors. In large-scale benchmark experiments based on SCOP, we find that our adaptive

codes method significantly outperforms one-vs-all in both the remote homology detection and the fold

recognition setting. Moreover, we find that our method successfully exploits hierarchical information in the

remote homology setting, in that multi-class prediction performance continues to increase as we add more

code elements corresponding to more levels of the SCOP hierarchy. We also dramatically outperform a

nearest-neighbor approach based on PSI-BLAST in terms of multi-class prediction accuracy for every

structural classification problem that we consider.

The current work is an expanded version of a conference proceedings paper [22], with larger scale

experiments of the adaptive codes method. This work also describes our web server implementation,

SVM-Fold, which is available for use at http://www.c2b2.columbia.edu/svm-fold. A companion paper that

focuses more on the algorithmic details of code learning will appear elsewhere.

Results and Discussion
Remote homology detection and fold recognition in a multi-class setting

In this work, we focus on two protein classification problems that have long been studied but are still

considered unsolved: remote homology detection and fold recognition. In remote homology detection, we

wish to recognize when a new protein sequence has a distant evolutionary relationship to a protein

sequence in a database (e.g., one whose structure is known). Due to a distant common ancestor, the

protein sequences exhibit subtle sequence similarities (remote homology) that cannot generally be detected

by statistical, alignment-based methods [1, 23]. In fold recognition, we wish to recognize when a new

protein sequence will exhibit the same fold as a protein from the structure database, even if is there is no

evidence of any evolutionary relationship between the proteins.

We base our experiments on SCOP, a manually curated hierarchical classification system for known protein

structures. At the top level of the hierarchy are SCOP very broad structural classes. These are subdivided

into folds, consisting of sequences that have the same general 3D structural architecture. SCOP folds are

divided into superfamilies, containing sequences that are at least remotely homologous (evolutionarily

related). Finally, each superfamily is further divided into families, consisting of homologous sequences with

an easily detectable level of sequence similarity. We can design experiments based on the SCOP hierarchy
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to test performance on both the remote homology detection and the fold recognition problem, as depicted

in Figure 1.

To test our final fielded system, we assembled benchmark data sets for the remote homology detection and

fold recognition problems using sequences from the SCOP 1.65 protein database. We used ASTRAL [24] to

filter these sequences so that no two sequences share greater than 95% identity. Note that the actual

database used on the web server differs from these datasets, as there is no requirement for a test set.

Benchmark data sets

For the fold recognition problem, we designed our benchmark experiments so that the test set consists of

held-out superfamilies belonging to folds that are represented in the training data. We prepared a data set

by first removing all superfamilies that have less than 5 sequence examples. We then removed all folds that

have less than 3 superfamilies. We selected superfamilies for testing at random from the remaining

superfamilies such that the test set for the superfamily contains no more than 40% of the remaining

sequences for the fold. If at least one suitable superfamily could not be found, then the fold was removed

from the experiment. The resulting fold detection data set contains of 26 folds, 303 superfamilies, and 652

families for training. We completely hold out 614 sequences from 46 superfamilies for testing.

For the remote homology detection, the test set should contain held-out families belonging to superfamilies

that are represented in the training data. One can evaluate performance for multi-class prediction of fold

or superfamily levels, and it is natural to try different codes for these two tasks; therefore, we prepared a

separate data set for remote homology superfamily and fold detection. For the superfamily data set, we

used the same selection scheme as for fold recognition, except the minimum number of sequences for the

children of the superfamilies is relaxed to 3, and we selected random families for testing instead of

superfamilies. The resulting superfamily detection data set contains of 74 superfamilies, and 544 families

for training. We completely hold out 802 sequences from 110 families for testing.

For the remote homology fold detection data set, we first removed all superfamilies with less than 2

families. We then selected families from the remaining superfamilies for testing. We selected families at

random from each superfamily such that we never selected more than 40% of the parent superfamily for

testing. If no such families were found then the superfamily was removed from the data set. If a fold was

then found to have no superfamilies with held out families for testing, it was removed from the data set.

The resulting remote homology detection set contains 44 folds, 424 superfamilies, and 809 families for

training. We completely hold out 381 sequences from 136 families for testing.
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When training base classifiers, we only use negative data from outside of the target class of the experiment.

For fold recognition, this means that when we train superfamily or family detectors, we exclude negative

example sequences that come from the parent fold.

Training workflow for benchmark experiments

To set up the adaptive codes optimization problem during training, we use a cross-validation scheme to

embed protein sequences in an output space, representing each protein as a vector of SVM discriminant

scores. Suppose the number of superfamilies and folds in a SCOP-based data set is k and q respectively,

and suppose we are interested in codes that incorporate fold and superfamily levels of the hierarachy, for

example. Then our approach for solving the multi-class protein classification problem involves producing a

real-valued output vector ~f(x ) = (f1(x ), ..., fk+q(x )) for each test sequence x , where the fi are binary SVM

superfamily or fold detectors trained using profile string kernels [11], and using (k + q)-length code vectors

Cj that encode the superfamily and fold of a protein class as a bit vector. We use training data to learn a

weight vector W = (W1, . . . , Wk+q) to perform multi-class predictions with the weighted code prediction

rule, ŷ = argmaxj(W ∗ ~f(x )) ·Cj , where W ∗ ~f(x ) denotes component-wise multiplication. We learn W by

a cross-validation set-up on the training set, using a ranking perceptron. The full methodology consists of

five steps: (1) split the training data into 10 cross-validation sets; (2) learn fold- and superfamily-level

detectors from the partitioned training set—performing fold recognition and superfamily recognition on the

held-out cross-validation sets, thereby generating training data for code weight learning; (3) use the

ranking perceptron algorithm for learning the optimal weighting of classifiers in code space; (4) re-train

superfamily and fold detectors on the full training set; and (5) test on the final untouched test set. Figure

2 shows a summary of the above steps, and Figure 3 shows the cross-validation scheme for learning W.

Benchmark results

Remote homology detection performance

For the remote homology detection data sets, where the test set consists of held-out protein families that

belong to superfamilies represented in the training data, we evaluate performance both for the

superfamily-level and fold-level prediction tasks. Results for multi-class superfamily and fold prediction are

provided in Tables 1 and 2, respectively. We compare our adaptive codes method to PSI-BLAST, a

standard homology detection method based on sequence alignment, as well as simple one-vs-all, sigmoid

fitting, using various choices of code vectors. In addition to reporting classification loss and balanced loss
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results, we give “top 5” classification and balanced loss performance, which evaluates whether the correct

class was found in the top 5 class predictions. The motivation for top 5 loss results is that a structural

biologist might be willing to investigate a small number of false positives if it was likely that the list also

contained the true structural class. We also report results based on the false detection (FDR) rate for each

of the methods. We report the percentage of true positives recovered when we set the threshold such that

FDR = FP/(FP + TP ) is equal to 0.01 or 0.05, where FP, TN and TP are the number of false positives,

true negatives and true positives, respectively. Because these are multi-class methods, the real-valued

output for each possible output label y and each test example x is considered an individual prediction

(which is either right or wrong) and a single threshold is chosen over all predictions. A similar procedure is

conducted for PSI-BLAST. Here, the motivation is to compare how well the methods detect true remote

homologs or recognize true fold members at a high confidence level.

For the superfamily prediction task, we find that the adaptive codes method significantly outperforms

one-vs-all both in terms of classification and balanced error, even when superfamily-only codes are used,

and performance improves as more elements are added to the codes. We also note that sigmoid fitting gives

substantially worse performance than one-vs-all for this task. When compared to the widely-used

PSI-BLAST method, even simple one-vs-all outperforms PSI-BLAST strongly in terms of classification

error and slightly in terms of balanced error; adaptive codes outperforms PSI-BLAST very strongly by

both measures and also when considering “top 5” prediction performance. In terms of the detection rate at

low false discovery rates (FDR = 1% or 5%), all SVM-based methods significantly outperform PSI-BLAST,

and in particular at FDR = 5%, there is a trend of greater detection rates as the code length increases.

For the fold prediction task, we use a different set of codes, including code elements corresponding to

protein fold detectors. We observe a similar trend, with adaptive codes again beating one-vs-all with

respect to classification and balanced loss when fold-only codes are used and performance continuing to

improve as the length of the codes increases. The best result for adaptive codes is significantly better than

PSI-BLAST. Finally, sigmoid fitting slightly degrades performance as compared to one-vs-all. At low false

positive rates, we again observe that adaptive codes has a greater detection rates as code elements are

added, and results for the longest codes are significantly better than one-vs-all. However, for this problem,

unlike the superfamily prediction task, PSI-BLAST has better detection performance at low false positive

rates than the adaptive codes method, showing that PSI-BLAST is doing relatively well at high confidence

predictions even though the overall error rates are worse.

Overall, we observe that when the individual code elements are helpful, as seems to be the case in remote
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homology detection, our adaptive codes method can successfully improve performance by adding elements

without overfitting.

Fold recognition results

For the more difficult fold recognition task, where the data set consists of held-out superfamilies from

protein folds represented in the training data, we expect that code elements from subclasses (i.e.

superfamilies and families) will provide less information, since protein sequences from different

superfamilies in principle have no detectable sequence similarity.

Results for the fold recognition problem are provided in Table 3. Note first that the errors for PSI-BLAST,

even for the top 5 fold predictions, are very high, underscoring the difficulty of the problem. Sigmoid

fitting appears to slightly help reduce one-vs-all error in this case, though balanced error is unaffected. We

find that the adaptive codes method can again beat one-vs-all and strongly outperform PSI-BLAST in

terms of prediction accuracy, but we see no trend of improvement as more code elements are added, with

various length codes leading to similar error rates. At low false discovery rates, the adaptive codes method

has much higher fold recognition rates than PSI-BLAST and also outperforms one-vs-all. Interestingly,

here the best high confidence detection rate does occur for the longest codes, though the trend is unclear.

We conclude that in this case, since the code elements corresponding to subclasses are not as helpful, the

adaptive codes method cannot consistently leverage longer codes to achieve much higher accuracy.

However, the weight learning approach does significantly outperform one-vs-all and greatly outperform

PSI-BLAST by all evaluation measures.

The SVM-Fold web server

In this section, we describe some details of the web server that implements our system, which is available

at http://www.c2b2.columbia.edu/svm-fold. The server can perform both superfamily and fold detection

but performs fold detection by default. One can switch between the two modes using a link on the front

page. The coverage for each mode, that is, the set of folds or superfamilies that a given query sequence is

ranked against, is given via a link named “coverage” on the front page. Users of the website can enter raw

sequence data in FASTA format data directly into a form on the web-page, or select a local FASTA file to

upload to the server (see Figure 4). Alternatively, the user can supply a PSI-BLAST profile file (output of

blastpgp -Q) instead. In the advanced options on the main page one can select either zero-one or balanced

loss optimized SVMs, or alternatively just use standard PSI-BLAST ranking.
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The server will then add the query to a queue and compute the results (See Figure 5). A query currently

takes approximately 6 minutes from when it starts processing on a 2Ghz AMD Opteron processor with

8GB memory. Approximately 5 minutes of this computation is actually computing the profile using

PSI-BLAST for use with the profile kernel. On completion, the user is presented with a table showing the

resulting SCOP-Fold ranking of their sequence along with an empirically estimated confidence value (see

Methods) and SCOP derived comments relating to the fold or superfamily (See Figure 6). The results

table also contains links to pages detailing results for each target SCOP class. These pages link to the

relevant pages on the SCOP website and show both PSI-BLAST E-values and profile kernel scores (see

Methods) between the query protein and the set of proteins from the SCOP class in the training set. For

each protein in these rankings, we can go to a full SCOP definition or to a molecule rendering of that

protein. The molecule renderer uses OpenRasMol on the server-side to deliver small animated 3D renders,

without the need for a browser plugin. There are controls on this page to rotate the molecule and to alter

the render style (see Figure 7).

For fold detection, the website currently ranks a list of 65 SCOP folds, using detectors for 65 folds, 560

superfamilies and 1126 families. For superfamily detection, the website ranks a list of 174 SCOP

superfamilies, using detectors for 174 superfamilies and 1036 families.

Conclusions

In this article, we have described the fielded protein superfamily and fold recognition system, SVM-Fold.

SVM-Fold uses the discriminative support vector machine algorithm with a state-of-the-art string kernel

based on PSI-BLAST profiles to leverage unlabeled data. Binary one-vs-the-rest SVM classifiers that are

trained to recognize individual structural classes yield prediction scores that are incomparable, so that

standard “one-vs-all” classification performs suboptimally when the number of classes is very large, as in

this case. To deal with this challenging problem, we have developed an adaptive multi-class codes

algorithm that learns relative weights between one-vs-the-rest classifiers and, further, encodes information

about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on

the SCOP database, our system significantly improves on the prediction accuary of both a baseline use of

PSI-BLAST and the standard one-vs-all method on every structure classification problem we consider.

The SVM-Fold web server now makes a state-of-the-art SVM-based protein classification system available

to the bioinformatics community. In future work, we plan to increase the coverage of SCOP folds and

superfamilies represented in our system and eventually extend our system to other structural taxonomies,
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such as CATH [25]. We will also develop and implement discriminative approaches to the problem of

segmenting multi-domain protein sequences into domains by using SVM-based classifiers as domain

recognizers.

Methods
Profile-based string kernel SVM

As a base for our multi-class protein classifier, we use profile-based string kernel SVMs [11] that are trained

to perform binary classifications on the fold and superfamily levels of SCOP. The profile kernel is a

function that measures the similarity of two protein sequence profiles based on their representation in a

high-dimensional vector space indexed by all k-mers (k-length subsequences of amino acids). Specifically,

for a sequence x and its sequence profile P (x ) (e.g. PSI-BLAST profile), the positional mutation

neighborhood is defined by the corresponding block of the profile P (x ):

M(k,σ)(P (x [j + 1 : j + k])) =

{β = b1b2 . . . bk : −

k
∑

i=1

log pj+i(bi) < σ}.

Note that the emission probabilities, pj+i(b), i = 1 . . . k, come from the profile P (x )—for notational

simplicity, we do not explicitly indicate the dependence on x . Typically, the profiles are estimated from

close homologs found in a large sequence database; however, these estimates may be too restrictive for our

purposes. Therefore, we smooth the estimates using background frequencies, q(b), b ∈ Σ, of amino acids in

the training data set via

p̃i(b) =
pi(b) + tq(b)

1 + t
, i = 1 . . . |x |,

where t is a smoothing parameter. We use the smoothed emission probabilities p̃i(b) in place of pi(b) in

defining the mutation neighborhoods.

We now define the profile feature mapping as

ΦProfile
(k,σ) (P (x )) =

∑

j=0...|x |−k

(φβ(P (x [j + 1 : j + k])))β∈Σk

where the coordinate φβ(P (x [j + 1 : j + k])) = 1 if β belongs to the mutation neighborhood

M(k,σ)(P (x [j + 1 : j + k])), and otherwise the coordinate is 0. Note that the profile kernel between two
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protein sequences is simply defined by the inner product of feature vectors:

KProfile
(k,σ) (P (x ), P (y)) =

〈ΦProfile
(k,σ) (P (x )), ΦProfile

(k,σ) (P (y))〉.

The use of profile-based string kernels is an example of semi-supervised learning, since unlabeled data in

the form of a large sequence database is used in the discrimination problem. Moreover, profile kernel values

can be efficiently computed in time that scales linearly with input sequence length. Equipped with such a

kernel mapping, one can use SVMs to perform binary protein classification on the fold level and

superfamily level. We call these trained SVMs fold detectors and superfamily detectors.

Adaptive code-learning

Suppose that we have trained q fold detectors. Then for a protein sequence, x , we form a prediction

discriminant vector, ~f(x ) = (f1(x ), ..., fq(x )). The simple one-versus all prediction rule for multi-class fold

recognition is ŷ = arg maxj fj(x ). The primary problem with this prediction rule is that the discriminant

values produced by the different SVM classifiers are not necessarily comparable. While methods have been

proposed to convert SVM discriminant scores into probabilistic outputs, for example using sigmoid

fitting [21], in practice there may be insufficient data to estimate the sigmoid, or the fit may be poor. Our

approach, in contrast, is to learn the optimal weighting for a set of classifiers, thereby scaling their

discriminant values and making them more readily comparable. We also incorporate information available

from the superfamily detectors for doing multi-class superfamily and fold recognition by designing output

codes.

We construct our codes to incorporate knowledge about the known structural hierarchy provided by SCOP.

Define for superfamily classes j ∈ {1, ..., k}, code vectors Cj = (superfamj , foldj), where superfamj and

foldj are vectors with length equal to the number of known superfamilies (k) and folds (q), and each of

these two vectors has exactly one non-zero component corresponding to structural class identity. Each

component in Cj is known as a code element and represents the discriminant value given by the

corresponding classifier.

We adapt the coding system to fit the training data by learning a weighting of the code elements (or

classifiers). The final multi-class prediction rule is ŷ = argmaxj(W ∗ ~f(x )) ·Cj, where ∗ denotes the

component-wise multiplication between vectors. To learn the weight vector W, we formulate a hard

margin optimization problem as minW ||W||
2
2, subject to

(

W ∗ ~f(xi)
)

· (Cyi
−Cj) ≥ 1, ∀j 6= yi.
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Intuitively, our problem is to find an optimal re-weighting of the discriminant vector elements such that a

weighted embedding of the discriminant vector in code space R
k+q will exhibit large margins to

discriminate between correct and incorrect codes (i.e., class identity).

The ranking perceptron algorithm [26] is a variant of the well-known perceptron linear classifier [27]. In

our experiments, the ranking perceptron receives as input the discriminant vectors for training sequences

and produces as output a weight vector W which is a linear combination of the input vectors projected

onto code space. We modify the ranking perceptron algorithm such that it will learn our weight vector W

by satisfying n constraints:

W · (~f(xi) ∗Cyi
− ~f(xi) ∗Cj) ≥ m, ∀j 6= yi (1)

where m is the size of the margin we enforce (Figure 9).

The update rule of the ranking perceptron algorithm can be different depending on what kind of loss

function one is aiming to optimize. In standard zero-one loss (or classification loss), one counts all

prediction mistakes equally,

lz(y, ŷ) =

{

1 if ŷ 6= y;

0 otherwise.

The final zero-one empirical loss is 1
n

∑

i lz(yi, ŷi). In balanced loss, the cost of each mistake is inversely

proportional to the true class size,

lb(y, ŷ) =

{

1
|yi:yi=y| if ŷ 6= y;

0 otherwise.

The final balanced empirical loss is 1
|Y |

∑

i lb(yi, ŷi), where Y denotes the set of output labels.

Balanced loss is relevant to protein structure prediction because class sizes are unbalanced, and we do not

want to perform well only on the largest classes. The particular ranking perceptron training and prediction

algorithms that we use are summarized in the pseudocode in Figure 9, including update rules for both

zero-one and balanced loss.

Relation to other approaches

We note that Rätsch et al. [28] considered a more general and difficult problem of adapting codes and

embeddings, that is, learning both the code vectors and the embedding of the vector of prediction scores in

output space via a non-convex optimization problem. In addition, Crammer and Singer [19] formulated

another more general problem of learning a mapping of all inputs to all outpus. By restricting ourselves to

the simpler problem of reweighting the output space so that our fixed codes perform well, we are able to
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define a convex large-margin optimization problem that can be efficiently solved with recent methods and

is tractable in very large scale settings. Unlike the other two approaches, we can also choose which loss

function we wish to optimize—for example, in protein classification, we can use the balanced loss, so that

performance on the large classes does not dominate the results—and we can make use of hierarchical labels.

Confidence scores

In the results table for the webserver, we also provide a confidence score for each target class, which is the

empirical probability that the ranking score is correct. This is achieved by performing a cross-validation on

the training set and and creating a histogram of probabilities for each class given the ranking scores and

their correct labels. These are shown in Figure 10.

Optimizations

The profile kernel for the entire training set can be efficiently computed using a trie data structure [11]. To

do this, one performs a lexical traversal of all instances of k-mers that appear in the dataset. Hence, the

tree is a rooted tree of depth k where each internal node has 20 branches, each labeled with an amino acid.

A leaf node represents a fixed k-mer in our feature space, obtained by concatenating branch symbols along

the path from root to leaf. We perform a depth-first traversal of the data structure, and at each step we

maintain the list of k-mers, and the proteins that they are derived from, that appear in the training set

which are in the positional mutation neighborhood of the current node in the tree. Each passage from

parent node to child node reduces the size of this list; as soon as this list is empty, further branches from

this node are not explored. If a leaf node is reached we can update the kernel matrix using the remaining

k-mers in the list.

The profile kernel method employed by the webserver is optimized to produce one row of the kernel matrix.

This is implemented as above except one only needs to traverse nodes that contain k-mers from the query

sequence. A further refinement is that the webserver caches the tree of k-mers found in the training

dataset to the first three levels of the tree, taking approximately 8GB of memory. On receving a query, the

server process forks and completes the tree with respect to the query. Caching the tree reduced the profile

kernel portion of the query processing time in a typical example from 3min 43s to 1min 18s.
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Figures
Figure 1 - Two protein classification problems

Remote homology detection Fold recognition

Figure 1: (Left) In the SCOP database, we simulate the remote homology detection problem by holding out
a test family (shown in dark gray) from a superfamily and using the other families as positive training data
(shown in light gray). The task is to correctly predict the superfamily or fold membership of the held-out
sequences. (Right) We simulate the fold recognition problem by holding out a test superfamily (dark gray)
from a fold and using the other superfamilies as training data (light gray). The task is to correctly recognize
the fold of the held-out sequences.
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Figure 2 - Summary of the main stages of the adaptive code methodology for multi-class protein

classification.

Figure 2: The figure gives an overview of the training workflow for the adaptive codes method. The box for
learning weights is illustrated in detail in Figure 3.
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Figure 3 - The mechanism for learning code weights

Figure 3: The figure shows the cross-validation set-up for supervised learning of the weight vector W.
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Figure 4 - SVM-Fold home page

Figure 4: A screen capture of the SVM-Fold home page.
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Figure 5 - SVM-Fold processing page

Figure 5: A screen capture of the SVM-Fold processing page.
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Figure 6 - SVM-Fold results page

Figure 6: A screen capture of the SVM-Fold results page.

21



Figure 7 - SVM-Fold molecule view

Figure 7: SVM-Fold provides links to views of representative 3D structures.
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Figure 8 - SVM-Fold query processing

Figure 8: An overview of the SVM-Fold system.
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Figure 9 - Pseudocode for the ranking perceptron algorithm used to learn code weighting

(A) Code weights learning

1: Define F (x , y) = W · (~f(x ) ∗Cy)
2: Input ν:
3: W← ~0
4: for i = 1 to n do
5: k = argmaxp∈{Y −yi} F (xi, p)
6: if F (xi, yi)−m < F (xi, k) then

7: W←W+νn−1
i

(

~f(xi) ∗Cyi
− ~f(xi) ∗Ck

)

8: end if
9: end for

10: Return W

(B) Class prediction

1: Define F (x , y) = W · (~f(x ) ∗Cy)
2: Input W, xi:
3: Return ŷ ← arg maxj F (xi, j)

Figure 9: In the pseudocode, ν is the learning rate; ni = |{yj : yj = yi}| for balanced-loss, and ni = 1 for
zero-one loss.
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Figure 10 - SVM-Fold fold detection confidence
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Figure 10: Confidence vs. ranking score for fold detection on the SVM-Fold server.
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Tables
Table 1 - Results for multi-class superfamily prediction in the remote homology detection set-up.

Results for the adaptive codes method are reported for a SCOP benchmark data set (67 folds, 74

superfamilies, 544 families, with 802 test sequences).
Balanced Balanced Detection Detection

Top 5 Top 5 Rate at Rate at
Method (and optimization target) Error Error Error Error fdr=1% fdr=5%
PSI-BLAST 0.3990 0.4571 0.2731 0.3654 0.3229 0.4214
one-vs-all: Sfams 0.2706 0.4454 0.1047 0.1973 0.4239 0.5549
one-vs-all: Sfams,Fams 0.2706 0.4454 0.1097 0.2070 0.4239 0.5549
Sigmoid Fitting: Sfams 0.3678 0.5561 0.2020 0.3724 0.3641 0.4726
Adaptive Codes: Sfams (zero-one) 0.2444 0.3805 0.0960 0.1591 0.4264 0.5711
Adaptive Codes: Sfams (balanced) 0.2481 0.3723 0.1110 0.1634 0.4289 0.5673
Adaptive Codes: Sfams,Fams (zero-one) 0.2369 0.3739 0.0948 0.1561 0.4352 0.5698
Adaptive Codes: Sfams,Fams (balanced) 0.2394 0.3632 0.1047 0.1558 0.4302 0.5698
Adaptive Codes: Sfams,Fams,Fams (zero-one) 0.2219 0.3401 0.0910 0.1359 0.4277 0.5723
Adaptive Codes: Sfams,Fams,Fams (balanced) 0.2195 0.3273 0.1047 0.1516 0.4327 0.5910

Table 2 - Results for multi-class fold prediction in the remote homology detection set-up.

Results for the adaptive codes method are reported for a SCOP benchmark data set (44 folds, 424

superfamilies, 809 families, with 381 test sequences).
Balanced Balanced Detection Detection

Top 5 Top 5 Rate at Rate at
Method (and optimization target) Error Error Error Error fdr=1% fdr=5%
PSI-BLAST 0.4094 0.4428 0.2966 0.3666 0.3123 0.3412
one-vs-all: Folds 0.3307 0.4565 0.1260 0.1954 0.2073 0.2493
one-vs-all: Folds,Sfams 0.3307 0.4565 0.1260 0.1954 0.2073 0.2336
Sigmoid Fitting: Folds 0.3465 0.4973 0.1706 0.3407 0.2178 0.2283
Adaptive Codes: Folds (zero-one) 0.3018 0.3769 0.1286 0.1862 0.2073 0.2362
Adaptive Codes: Folds (balanced) 0.3281 0.3766 0.1680 0.1702 0.2073 0.2362
Adaptive Codes: Folds,Sfams (zero-one) 0.2808 0.3749 0.1155 0.1770 0.2283 0.2493
Adaptive Codes: Folds,Sfams (balanced) 0.2887 0.3659 0.1260 0.1427 0.2231 0.2388
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.2493 0.3474 0.1024 0.1726 0.2231 0.2677
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.2703 0.3445 0.1155 0.1418 0.2283 0.2703

Table 3 - Results for multi-class fold prediction in the fold recognition set-up.

Results for the adaptive codes method are reported on a SCOP benchmark data set (26 folds, 303

superfamilies, 614 test sequences).
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Balanced Balanced Recognition Recognition
Top 5 Top 5 Rate at Rate at

Method (and optimization target) Error Error Error Error fdr=1% fdr=5%
PSI-BLAST 0.6482 0.7029 0.5179 0.5431 0.0814 0.0961
one-vs-all: Folds 0.4625 0.6282 0.1450 0.2345 0.1368 0.2704
one-vs-all: Folds,Sfams 0.4625 0.6282 0.1450 0.2345 0.1368 0.2704
Sigmoid Fitting: Folds 0.4446 0.6103 0.1547 0.2960 0.1336 0.2166
Adaptive Codes: Folds (zero-one) 0.4023 0.5556 0.1059 0.1543 0.1906 0.2655
Adaptive Codes: Folds (balanced) 0.3664 0.5158 0.1075 0.1387 0.1612 0.2785
Adaptive Codes: Folds,Sfams (zero-one) 0.4104 0.5525 0.1107 0.1719 0.2003 0.2329
Adaptive Codes: Folds,Sfams (balanced) 0.3616 0.5153 0.1010 0.1263 0.2068 0.2508
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.4007 0.5427 0.1075 0.1788 0.2068 0.2557
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.3648 0.5000 0.1091 0.1453 0.2134 0.3013
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