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Mass spectrometric identification of cross-linked peptides can provide valuable information about the
structure of protein complexes. We describe a straightforward database search scheme that identifies
and assigns statistical confidence estimates to spectra from cross-linked peptides. The method is well
suited to targeted analysis of a single protein complex, without requiring an isotope labeling strategy.
Our approach uses a SEQUEST-style search procedure in which the database is comprised of a mixture
of single peptides with and without linkers attached and cross-linked products. In contrast to several
previous approaches, we generate theoretical spectra that account for all of the expected peaks from
a cross-linked product, and we employ an empirical curve-fitting procedure to estimate statistical
confidence measures. We show that our fully automated procedure successfully reidentifies spectra
from a previous study, and we provide evidence that our statistical confidence estimates are accurate.
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1. Introduction

Proteins are the primary functional molecules in the cell, and
most protein functions are carried out by multiprotein com-
plexes. However, understanding how a protein complex works
often requires knowing the 3D structure of the complex, and
discovering this structure is notoriously difficult. Therefore,
mass spectrometry protocols that are capable of providing even
partial information about the structure of a protein complex
are in high demand.1

Perhaps the most straightforward protocol involves three
steps: (1) cross-linking protein-protein interactions using a
linker of known molecular weight, (2) enzymatically digesting
the cross-linked proteins into peptides, and (3) subjecting the
peptides to microliquid chromatography coupled with tandem
mass spectrometry analysis. The resulting collection of frag-
mentation spectra correspond to various types of ions, il-
lustrated in Figure 1: linear peptides, peptides with one cross-
linker attached (either dead-end products or self-loops),
intraprotein cross-links and interprotein cross-links. The last
class of molecules provides information about the 3D structure
of the protein complex, because these molecules give informa-
tion about the proximity of amino acids in two interacting
proteins. Although more complex cross-linked peptide products
can exist, they are usually not considered.2

Identifying spectra produced by cross-linked products is
challenging, because each spectrum contains a mixture of

fragment ions from single peptides and from the cross-linked
peptides. Two research groups have proposed protocols for
mapping cross-linked peptides to observed spectra using
existing database search tools. Maiolica et al.3 use the Mascot
search tool,4 coupled with a database of concatenated peptide
pairs. The pairwise database is created by extracting, from a
given peptide database, all possible peptide pairs and concat-
enating each pair in both possible orders. Thus, a cross-linked
pair of peptides A and B will share ions with both of the
corresponding peptide pairs A:B and B:A. Indeed, A:B and B:A
jointly account for all of the single-bond cleavages of the
corresponding cross-linked product; however, as illustrated in
Figure 2B, neither concatenated peptide pair alone matches
all of the expected ions, and both concatenated peptide pairs
contain additional ions that do not occur in the cross-linked
product. Because of these deficiencies, Maiolica et al. only use
Mascot to identify candidate cross-linked products. The authors
then apply a second, probabilistic function to rescore high-
scoring matches identified by Mascot. Fundamentally, this
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Figure 1. Various types of molecules produced by a cross-linking
protocol. The molecule inside the dotted circle is an interprotein
cross-link.
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approach is hampered by its reliance on an existing database
search engine, because any cross-linked pair that does not score
well, according to Mascot, against one of its two corresponding
concatenated peptides will never be considered by the second-
tier score function.

The protocol proposed by Singh et al.5 relies upon a
combination of two different types of search. First, the spectra
are searched against a standard sequence database, and spectra
that match with high confidence are eliminated from consid-
eration. Second, the remaining unmatched spectra are analyzed
using an open modification search tool called Popitam,6 which
is designed to identify chemically modified peptides when the
modification mass is not known in advance. The key idea
behind the Singh et al. protocol is to find a spectrum that
matches well against two different peptides with complemen-
tary modifications. Say that the first peptide has a mass of p1

and a modification of m1, and the second peptide has corre-
sponding masses of p2 and m2. Then, because both peptides
match the same spectrum, we know that

Furthermore, because we know the mass c of the cross-linker,
we know that if these two peptides are cross-linked to one
another, then the mass of the modification on the first peptide
should equal the mass of the second peptide plus the mass of
the cross-linker, and vice versa, that is,

If we identify two strongly matching peptides for which the
modification masses obey these arithmetic rules, then we have
a good candidate for a true cross-linked pair.

This idea has intuitive appeal, but the protocol suffers from
one significant drawback: by treating one peptide as a single
modification on the other peptide, each individual search
effectively ignores all of the fragmentation peaks associated
with one of the two peptides. The situation is illustrated in
Figure 2A. Popitam must be capable of recognizing matches

to theoretical spectra that contain only half of the expected
ions. Therefore, a spectrum may not match any single modified
peptide very well, even though the spectrum matches the pair
of peptides quite well indeed. Additionally, since Popitam
scores the two peptides with their respective modifications
separately rather than jointly as a cross-linked candidate, the
quality of the match and the observed spectrum must be
manually verified.

In this work, we propose an alternative and more direct
approach to the problem of identifying cross-linked product
spectra: we modify an existing search algorithm to use a
database that contains a mixture of peptides, dead-end prod-
ucts, self-loops and cross-linked products. For the cross-linked
peptides, we use theoretical spectra similar to the one shown
in Figure 3. We then perform a SEQUEST-style search against
this database. To make this search procedure useful in practice,
we must be able to assign statistical confidence estimates to
the assigned spectra. We compute these confidence values
using a previously described empirical curve-fitting protocol.7

Below, we demonstrate that the search protocol is capable
of automatically rediscovering the correct cross-linked peptides
from previously described spectra. We also demonstrate that
the p-values estimated by our method are accurate, in the sense
that they follow a uniform distribution when computed with
respect to null data, and we show empirically that the method
does not introduce false positive matches against spectra that
correspond to unlinked peptides.

2. Materials and Methods

2.1. Data. The cross-linking data was collected as previously
described by Singh et al.5 Briefly, cross-linking reagent 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide (EDC) was added to
a 3:1 molar ratio of Escherichia coli expressed recombinant
human cytochrome b5 (b5) and cytochrome P450 2E1 (CYP
2E1). After quenching the cross-linking reaction, the sample
was denatured with urea, reduced with DDT, alkylated with
iodoacetamide, and finally digested with trypsin. The final
sample was then analyzed using an LTQ-Orbitrap (Thermo-
Fisher, San Jose, CA) equipped with a nanoflow HPLC system
(NanoAcquity; Waters Corporation, Milford, MA). The raw data
was extracted into peak lists (.dta files) using the instrument’s
software (extract_msn.exe; Thermo Fisher, San Jose, CA). The
peak lists were then converted into a single.ms2 file containing
3314 spectra using an in-house script. The precursor mass-to-
charge and charge state is determined on-the-fly by the
acquisition software.

2.2. Generating Theoretical Spectra. For a given cross-linked
product, we generate a SEQUEST-style theoretical spectrum. The
spectrum includes peaks corresponding to b- and y-ions for both
peptides. Depending upon the location of the cleavage site relative
to the cross-linker, half of the ions include a “modification” whose
mass is equal to the mass of the cross-linker plus the mass of the
second peptide, as illustrated in Figure 3. For multiply charged
products, cleavage ions from all possible lower charge states are
generated. All b- and y-ions are arbitrarily assigned a theoretical
height of 50. In addition, the spectrum includes two flanking peaks
per b- or y-ion. These are assigned to 1 Da bins on either side of
the corresponding primary peak, and are assigned a height of 25.
Finally, the spectrum includes three types of neutral loss
peaksswater, ammonia and carbon monoxide (a-ions)swith a
fixed height of 10. The theoretical spectrum is created with 1 Da
resolution. If a single 1 Da bin contains more than one peak, then
the peak height is assigned as the maximum value of the

Figure 2. Comparison of product ions. (A) Ions that result from
fragmenting each b/y bond in a fictitious cross-linked product.
The two cross-linked peptides are each of length 4, resulting in
6 possible cleavage locations and 12 product ions. In the protocol
of Singh et al., the cross-linked product is represented as 2
distinct peptides, each with a single modification. One modified
peptide gives rise to the 6 product ions in the green box, and
the other gives rise to the 6 ions in the magenta box. (B) In the
protocol of Maiolica et al., the cross-linked product is represented
by 2 concatenated peptide pairs. Each pair gives rise to 14
product ions. In the figure, the left and right columns list the
fragment ions produced from the two relative orientations. In
each case, only 6 of the resulting fragment ions (boxed) would
be produced by the original cross-linked product.

m1 + p1 ) m2 + p2

m1 ) p2 + c
m2 ) p1 + c
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overlapping peaks. Since we are only considering single b-y
fragmentation events and we are assuming that the cross-link itself
does not fragment, self-loops will have many ions of the same
mass for the peptide’s amino acids that lie in between the linker
sites.

The database of candidate molecules is built in-memory
from the supplied fasta file of proteins. Our method generates
all possible product moleculesslinear peptides, inter/intra-
cross-links, dead-ends, and self-loopssfrom the tryptic pep-
tides with up to one missed cleavage site. In general, our model
considers all of the fragment ions that result from a single
fragmentation of a molecule. Self-linked peptides are included
in the database. However, fragmentation events that occur
anywhere along the peptide backbone between the two amino
acids that are cross-linked give rise to a single molecule, so
these are not considered. Our database does not include fully
cyclic peptides, since cleaving them into two fragments would
require two fragmentation events, which is not very common
during typical CID experiments. Furthermore, fully cylic pep-
tides are rarely generated from amine-reactive cross-linkers
such as EDC, because trypsin fails to cleave at the lysine
residues that are cross-linked. Finally, dead-end molecules are
included in our database, with the linker treated like a
modification on the amino acid. Again, if the linked amino acid
is a lysine for cross-linked or dead-end products, then the
cleavage by trypsin is prohibited.

2.3. Search and Calibration. For a given spectrum S, the
search procedure consists of three steps. First, the spectrum
itself is normalized according to the SEQUEST protocol.8

Second, we extract from the database the set of peptides and
cross-linked products whose total mass lies within a specified
range of the precursor mass inferred from the possible charge
states provided by the acquisition software. In the experiments
reported here, we use a 2.1 Da precursor mass range. Third,
these candidate peptides and cross-linked products are ranked
according to the SEQUEST score function XCorr:8,9

where x and y are the observed and theoretical spectra,
respectively. The result, for each spectrum, is a ranked list of
peptides and cross-linked products.

In general, the XCorr assigned to a theoretical spectrumseither
from a peptide or from a cross-linked productsdepends upon
properties of the spectrum as well as properties of the theoreti-
cal spectrum. Thus, an XCorr of 2.0 may be more surprising or
less surprising, in a statistical sense, depending upon the
properties of the spectrum. To account for the spectrum-
specific distribution of XCorr scores, we use an empirical
calibration scheme, as described previously.7 That procedure
works by fitting, for each spectrum, a three-parameter Weibull
distribution to the observed distribution of scores. The esti-
mated Weibull parameters are then used to convert the
maximal score to a p-value.

In the current study, we use a modified version of this
calibration protocol. Because the database of cross-linked
peptides is relatively small, we augment the observed score
distribution with additional decoy scores. These decoys are
generated by extracting candidate peptides using a larger
precursor mass range (20 Da, rather than 2.1 Da). We then
shuffle the nonterminal amino acids in each of these candidate
peptides. To achieve an accurate fit, we require a minimum of
4000 scores (targets plus decoys), so we continue reshuffling
the decoys and rescoring them until this minimum is achieved.

Each resulting p -value must be subjected to multiple testing
correction, to account for the number of candidate peptides
that were considered during the search. For multiply charged
spectra, the p-values for all possible charge states are merged
into a single list. We then select the top-ranked p -value, and
adjust it for multiple tests via the following transformation:

where p is the initial p-value, p̂ is the adjusted p-value, and c
is the total number of candidates (not including decoys).

For a collection of n spectra, our search procedure produces
a ranked list of n peptides and cross-linked products, each with
an associated p-value. To account for multiple testing with
respect to this collection of spectra, we use established meth-
ods10 to convert the p-values into q-values, where the q-value
is defined as the minimal false discovery rate (FDR) at which
a given p-value is deemed significant.

2.4. Availability of Data and Software. Additional informa-
tion is available at http://noble.gs.washington.edu/proj/xhhc:
the collection of 3314 spectra from ref 5, the sequences of

Figure 3. Theoretical spectrum for a cross-linked product. The figure shows the theoretical spectrum for a cross-linked pair of +1
peptides, KVIKNVAEVK and LYMEAD, linked at positions 4 and 6, respectively. As in SEQUEST, b- and y-ions are arbitrarily assigned
a height of 50, with flanking peaks of height 25 and neutral losses (ammonia, water and carbon monoxide) of height 10. The peaks
corresponding to the fragmentation illustrated on the left are colored as shown.
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proteins CYP2E1 and b5, the results of the large scale search
described in Section 3.3, the collection of 35 236 yeast spectra
from ref 11, and the sequences of the 5 randomly selected yeast
proteins used in Section 3.4. Software for performing the cross-
linked search procedure will be made available as part of the Crux
software toolkit,20 available at http://noble.gs.washington.edu/
proj/crux.

3. Results

3.1. Search Successfully Identifies Known Cross-Linked
Peptides. As an initial validation, we used our search tool to
assign cross-linked peptides to 10 spectra that had been
identified in the context of a previous study (Table 1).5 (On
the basis of independent, prior analyses, the location of the
cross-linker for the pair (FLEEHPGGEEVLR, YKLCVIPR) was
found to be in error in the original manuscript; the correct
assignment is (3, 2).) Our input consisted of the two target
proteins, human cytochrome P450 2E1 (CYP2E1) and cyto-
chrome b5 (b5), which contain 34 and 9 tryptic peptides,
respectively. The complete database contained 92 linear pep-
tides, 11 709 intra- and inter- protein cross-links, 252 dead-
end products, and 153 self-loop products. Enforcing a 2.1 Da
mass window identified an average of 12 intra- and inter- cross-
linked candidates per spectrum. Among these candidates, many
cross-linked products differ only in the location of the cross-
linker. On average, each of these 10 spectra has 4 distinct
peptide pairs as potential candidates within the mass range.

For each spectrum, we ranked the candidates by XCorr and
examined the top-scoring candidate. In seven out of 10 cases,
this procedure successfully identified the same pair of matched
peptides, with the same cross-linker location. For the remaining
three spectra, the two methods identify the same pair of
peptides but disagree on the location of the cross-linker relative
to one of the two linked peptides. These three spectra each
correspond to distinct pairs of peptides. To better understand
the differences in predicted cross-linker location, we compared
each observed spectrum to the two theoretical spectra pro-
duced by the two cross-linker locations. Figure 4 shows the
results of this analysis. In the figure, peaks are colored
according to whether they are matched by one or both of the
theoretical spectra. Scan 1267 is the only one of the 10 spectra
that maps to this particular peptide pair (KVIKNVAEVK and
LYMAED). As indicated by the preponderance of magenta peaks
in Figure 4A, the shift in the location of the cross-linker by three
amino acids has a very small effect on the two theoretical
spectra. Scan 1615 (Figure 4B), on the other hand, contains a

mixture of blue and green peaks, indicating that the two
theoretical spectra provide different but almost equally good
matches to the observed spectrum. Accordingly, the corre-
sponding XCorrs are similars1.89 and 2.22. Furthermore, scan
1605 (not shown) maps to the same pair of peptides, but assigns
a different location to the cross-linker. Thus, for both of these
scans, the true location of the cross-linker is difficult to
ascertain. For scan 1615, the cross-linker location differs by one
amino acid from the assignment given in the four other scans
(1653, 1657, 1658, and 1662). Because scan 1615 contains so
few matching ions, the precise cross-linker location is more
difficult to ascertain.

3.2. Decoy p-Values Follow a Uniform Distribution. Having
established that the method can successfully rank candidate
peptides with respect to individual spectra, we next investigated
whether the empirical curve-fitting procedure could success-
fully convert the XCorr scores into p-values. To do so, we
searched a previously described set of 3314 spectra5 against a
database derived from shuffled peptides from the cytochrome
P450 2E1 and cytochrome b5 proteins. Among these spectra,
2797 had at least one candidate peptide within 2.1 Da of the
inferred precursor mass. Because the peptides have been
shuffled, we do not expect any true matches to occur; therefore,
the observed p-values should be uniformly distributed. We
demonstrate this uniformity in Figure 5, which plots the
calculated p-value as a function of the rank p-value, where the
rank p-value of a score x is defined as the fraction of scores
that are greater than or equal to x. The linear relationship in
Figure 5 shows that the distribution of observed decoy p-values
are uniform and that we have successfully calibrated the XCorr
values.

3.3. Analysis of a Larger Data Set. Next, we applied our
search and calibration procedure to the larger data set of 3314
spectra, this time using the unshuffled protein sequences. To
correct for multiple testing with respect to these spectra, we
use established methods10 to convert the p-values into q-values,
where the q-value is defined as the minimal false discovery rate
(FDR) at which a given score is deemed significant. Figure 6
plots the number of spectra that are successfully identified as
a function of q-value threshold. At a threshold of q < 0.01, we
identify 218 spectra. Of these 218 spectra 182 are from linear
peptides, 25 are from inter- or intraprotein cross-links, six are
from dead-end products, and one is from a self-loop product.

Reassuringly, many of the same pairs of cross-linked peptides
are identified multiple times. Table 2 lists the distinct products
identified in the search. In many cases, the same pair of

Table 1. Searching with 10 Previously Identified Spectraa

scan + #prod #pairs peptide 1 peptide 2 loc (old) loc (new) q-val diff

1267 4 7 2 KVIKNVAEVK LYMAED (1, 6) (4,6) 0.005 *
1370 4 6 2 FLEEHPGGEEVLR VIKNVAEVK (4, 3) (4,3) 0.005
1605 5 14 2 EQAGGDATENFEDVGHSTDAR YSDYFKPFSTGKR (1, 6) (1,6) 0.000
1615 5 14 2 EQAGGDATENFEDVGHSTDAR YSDYFKPFSTGKR (9,12) (9,6) 0.030 *
1758 5 18 5 EQAGGDATENFEDVGHSTDAR YSDYFKPFSTGK (6, 6) (6,6) 0.000
1653 4 12 6 FLEEHPGGEEVLR YKLCVIPR (3, 2) (3,2) 0.000
1654 5 12 6 FLEEHPGGEEVLR YKLCVIPR (3, 2) (4,2) 0.838 *
1657 5 12 6 FLEEHPGGEEVLR YKLCVIPR (3, 2) (3,2) 0.000
1658 4 12 6 FLEEHPGGEEVLR YKLCVIPR (3, 2) (3,2) 0.000
1662 5 12 6 FLEEHPGGEEVLR YKLCVIPR (3, 2) (3,2) 0.005

a The table lists, for each of the 10 spectra, the scan number, charge state (“+”), number of candidate products (all peptides pairs with every possible
link), number of candidate peptide pairs, the two peptides, the inferred location of the cross-linker according to the previous method (“Loc (old)”) and the
proposed method (“Loc (new)”), and the q-value assigned to the match. Spectra for which the two methods disagree on the location of the linker are
marked with an asterisk in the “Diff” column.
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peptides is identified with multiple linker locations for different
spectra. As previously discussed in section 3.1, finding the exact
location of the cross-linker is difficult, since many of the ions
between the two products are similar. This problem is espe-
cially true in the cases of two particular cross-linked pairs of

peptides: (FKPEHFLNENGK, GTVVVPTLDSVLYDNQEFPDPEK)
and (FLEEHPGGEEVLR, HNHSKSTWLILHHK). In these cases,
the predicted cross-link sites differ by only one or two amino
acids, respectively, (2,22) versus (2,20) and (3,5) versus (4,5).

To produce the results in Table 2, we only considered tryptic
peptides that result from at most one missed cleavage. We
investigated the behavior of the algorithm when we relax this
requirement, allowing multiple missed cleavages. In this case,
the last entry in Table 2, intraprotein cross-linked product
(LYTMDFITVTVADLFFAGTETTSTTLR, YGLLILMKYPEIEEK), is
assigned to a linear peptide with two missed cleavages. In
addition, allowing multiple missed cleavages produces a new
identification: the intraprotein cross-linked product (DTIFR-
GYLIPKGTVVVPTLDSVLYDNQEFPDPEK, FKYSDYFKPFSTGKR)
is assigned to a scan that previously was not identified. These
results suggest that allowing more than one missed cleavage
may be beneficial.

To further validate our search method, we also report in
Table 1 the estimated q-values for the previously identified
spectra. Using our reported threshold of q < 0.01 we successfully
identify 8 of the 10 spectra. One other spectrum receives a low
q-value of 0.03. The remaining, extremely high q-value for scan
1654 is indicative of a problematic spectrum (see Figure 4C).
The spectrum has few peaks, with a low proportion of peaks

Figure 4. Disagreements in the location of the cross-linker. Each panel shows one spectrum for which the two methods disagreed on
the location of the cross-linker. The complete spectrum is shown as positive peaks; negative peaks correspond to peaks that are matched
by one or both theoretical spectra. Each such peak is colored according to whether it is matched by both theoretical spectra, only the
spectrum corresponding to the previously identified cross-linker location, or only the spectrum corresponding to the new location.
Listed above the spectrum is the scan number, and below is the pair of linked peptides.

Figure 5. Decoy p-values follow a uniform distribution. The figure
plots the calculated p-value as a function of the rank p-value for
all candidates and all spectra in the data set. The rank p-value of
a score x is defined as the fraction of scores that are greater than
or equal to x. The distribution of p-values is compared against y
) x (solid line), y ) 2x and y ) x/2 (dotted lines).
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matched by either theoretical spectrum, indicating that this is
likely an incorrect identification.

Finally, we investigated the extent to which the cross-linked
peptides identified by our method could have been identified
using theoretical spectra like the ones employed by Singh et
al. and Maiolica et al. For this analysis, we started with the 25
spectra identified with inter- or intraprotein cross-links at q <
0.01, and we eliminated any spectrum for which the identified
cross-linked peptide was only observed once. This procedure
yielded 17 high-confidence identifications. We then scored each
spectrum against our composite theoretical spectrum, as well
as the four degenerate theoretical spectra shown in Figure 2;
that is, we considered each peptide with the other peptide
represented as a single large modification, and we considered
the pair of peptides concatenated in both orientations. Figure
7 compares the XCorr scores computed using a composite
theoretical spectrum versus the two types of degenerate
theoretical spectra. To detect a viable cross-linked peptide, the
modification method of Singh et al. involves scoring two
degenerate theoretical spectra for each cross-linked product.
The concatenation method, on the other hand, searches using
a variable modification for the cross-link mass with the peptides
linearized in the two different orientations. With this protocol,
each candidate cross-linked peptide candidate results in four
separate match scores, two for the order of the two concat-
enated peptides times two for the cross-link modification
existing on either peptide. As seen in Figure 7, most of the
XCorr scores for either method are lower than the correspond-
ing scores from our composite method. From this observation,
we conclude that our composite score is less likely to introduce
false negative identifications than the two other methods we
compared against.

3.4. Negative Control: Noncross-Linked Spectra. To further
test the robustness of our search procedure, we performed one
additional negative control experiment. In this test, we used a
previously described collection of 35 236 spectra derived from
a yeast whole-cell lysate. Based on previous analyses using
Percolator,11 we collected a set of 756 high-confidence proteins,
each containing at least five peptide identifications with
confidence q < 0.01. We then randomly selected five of these
high-confidence proteins and used them to construct a data-

Figure 6. Results of a large-scale search. (A) Number of spectra identified, as a function of q-value threshold. The number of linear
peptides, inter/intra- protein cross-links, dead-end products, and self-loop products are on this plot. (B) Similar to (A), except that the
lines correspond to the number of unique species found versus q-value threshold.

Table 2. Distinct Products Identified in the Large-Scale Searcha

peptide1 peptide2 loc1 loc2 num % by % intensity mass error(ppm)

FKPEHFLNENGK GTVVVPTLDSVLYDNQEFPDPEK 2 22 6 16.2 36.2 250.2
FKPEHFLNENGK GTVVVPTLDSVLYDNAEFPDPEK 2 20 1 11.0 49.1 246.0
FKPEHFLNENGK GTVVVPTLDSVLYDNAEFPDPEK 2 9 1 7.2 51.9 252.2
FLEEHPGGEEVLR HNHSKSTWLILHHK 3 5 3 18.0 37.1 7.8
FLEEHPGGEEVLR HNHSKSTWLILHHK 4 5 1 16.8 48.4 6.7
FLEEHPGGEEVLR YKLCVIPR 3 2 5 19.5 37.6 4.7
FLEEHPGGEEVLR YKLCVIPR 9 2 3 18.5 36.1 8.4
KVIKNVAEVK LYMAED 4 6 1 34.8 44.5 7.2
EQAGGDATENFEDVGHSTDAR YSDYFKPFSTGK 6 6 1 11.0 34.2 1.8
EQAGGDATENFEDVGHSTDAR YSDYFKPFSTGKR 1 6 1 20.3 37.9 9.0
FLEEHPGGEEVLR VIKNVAEVK 4 3 1 13.1 36.8 6.2
LYTMDGITVTVADLFFAGTETTSTTLR YGLLILMKYPEIEEK 20 8 1 6.3 30.6 6.8

a Each peptide pair identified by the search at q < 0.01, along with the cross-linker locations and the number of spectra that mapped to that pair.

Figure 7. Comparison of scoring methods. In the figure, each
point corresponds to a single spectrum that has been identified
as a cross-linked product with high confidence. The y-axis is the
XCorr computed with respect to the composite theoretical
spectrum, and the x-axis is the XCorr computed with respect to
a degenerate theoretical spectrum. Green dots correspond to
degenerate spectra created by considering one peptide as a
modification on the second. Blue dots correspond to degenerate
spectra created by concatenating the two peptides in the two
different orders as well as the cross-link modification existing
on either peptide of the linearized pair. Larger dots signify the
maximum score assigned to a given cross-linked product.
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base. The resulting database contains 1244 linear peptides
(allowing at most one missed cleavage), 2 835 438 inter- and
intra-cross-link products, 3839 dead-end products, and 2481
self-loop products. Searching the 35 236 spectra against this
database and applying a q-value threshold <0.01, our procedure
identifies 91 spectra. This set includes 83 linear peptides, 6
inter- and intraprotein cross-links, 2 dead-end products, and
no self-loop products. The 83 linear peptides are highly
redundant, corresponding to only 29 distinct peptides. In
contrast, the 8 identifications for the cross-linked products are
unique for each spectrum. The small number of cross-link
products shows that our method is robust, that is, the method
prefers linear peptides rather than cross-link products from
spectra that contain only linear peptides.

4. Discussion

We have described a straightforward method for identifying
cross-linked peptides by comparing observed spectra to theo-
retical spectra derived from the cross-linked products. In
contrast to previous, multistep methods, our approach auto-
matically produces a single, ranked list of matched spectra. We
use an empirical calibration procedure, coupled with two types
of multiple testing correction, to compute false discovery rate
estimates. Thus, each matched spectrum is reported along with
a q -value, allowing the researcher to choose a confidence
threshold appropriate for their study.

While we demonstrated our method’s utility over two
previously described protocols,3,5 many other algorithms exist
forfindingcross-linkedpeptidesfromtandemmassspectra.2,5,12-19

However, most of these methods are not automatic or are
designed to work with cross-links or peptides that have been
isotopically labeled. Although not addressed in this work, a
similar method could be used to find cross-linked peptides that
have been isotopically labeled.

Our results suggest that our method correctly identifies
matched peptides but is less precise about the location of the
cross-linker. This observation is not surprising, because the
effect on the theoretical spectrum when the cross-linker moves
can be relatively small. Additionally, double fragmentation has
been shown to occur on either side of the cross-linked
peptide2,19 and would produce ions that were not included in
our current method. In the future, we will determine if the
addition of these ions to the theoretical spectrum assists in
precisely locating the position of the cross-linker. Another
direction we are actively investigating is methods to make use
of high resolution MS/MS spectra.

In the future, we plan on testing our method on data sets
with different cross-linkers and with more proteins. Unlike
some other methods,5,12 the approach we have described here
will not scale directly to very large databases. If we consider a
database of n peptides, then we must consider approximately
n2 pairs of peptides. Multiplying by the number of distinct
cross-linker locations can quickly lead to a very large database.
With this increase in the number of candidates, the search time
and discrimination power will be affected.

In this proof-of-concept investigation, we used unoptimized
code to carry out the database searches. Accordingly, the search
times are quite largesfor Section 3.3 approximately one CPU
day, and for Section 3.4 approximately seven CPU days. In the
former case, much of the running time was devoted to
achieving accurate calibration. The requirement of 4000 scores
to fit a three-parameter Weibull distribution is quite conserva-
tive. If speed is an issue, this requirement could be relaxed, at

the expense of higher variance in the resulting q-values. For
the negative control experiment, the selection of candidate
peptides dominates the search time. This time could be
decreased by at least an order of magnitude simply by making
use of Crux’s existing database indexing scheme.20 Thus,
through the use of straightforward optimizations of our existing
code, scaling up the computations to relatively large complexes
should be straightforward.

Of course, as we increase the search space, the discrimina-
tion task will also become more difficult. To address these
issues, we can employ machine learning methods11,21 to
achieve better separation of correct from incorrect identifications.

We did consider several alternative methods for performing
the calibration procedure. For example, one could imagine
omitting the peptide shuffling procedure and instead extracting
a large number of candidate peptides (or peptide pairs) from
a large, auxiliary database. This alternative method has the
advantage of using a set of decoy sequences that should be
more diverse in their amino acid content while having mass
closer to the target candidates. This approach will be explored
in the future.
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