Using mixtures of common ancestors for estimating the
probabilities of discrete events in biological sequehces

Eleazar Eskin'andWilliam Noble Grundy Yoram Singer
Department of Computer Science School of CSE
Columbia University Hebrew University
{eeskin,bgrundy@cs.columbia.edu singer@cs.huiji.ac.il
Abstract models are generative models where a model is

o - .___trained over one class of data. An unknown protein
Accurately estimating probabilities from observations ?equence is evaluated by each protein family model
impor_tant for pro'babilist_ic-based approaches to proq- determine which protein family is most likely to
lems in computational biology. In this paper we preseﬁ ve generated the protein sequence. These models
n

a biologically-motivated method for estimating probabify, ., 4e anproaches such as hidden Markov model-
ity distributions over discrete alphabets from observa-

X : . ased approaches [24, 9, 2, 23], probabilistic suffix
tions using a mixture model of common ancestors.

method is an extension of substitution matrix-based pr goeasﬁgg?lgﬁ)plg%i%meta[d?,i,si;ir?lri]r? a%(/cgllﬁidbe?: ?g\;dep
ability estimation methods. In contrast to previous su cen applied .to protein homology and approaches
stitution matrix-based methods, our method has asimpllgve included using support vector machines [21]
Bayesian interpretation. The method presented in ﬂ?;{lsld sparse Markov transducer approach [10]. In dis-
paper has the advantage over Dirichlet mixtures that it iminative models. the model is trained ovér data
both effective and simple to compute for large alphabe %ntaining multiple' classes. These discriminative

iTtir; rg:;zgdo'ﬁ 3@22?3;(;) fgﬂrr::st?n a;?]lr;cl)i a:r'ge?]rtogﬁb pproaches directly classify an unknown protein se-
g ence into a family.

di
shown to perform comparable to previous methods. T%e
method is also applied to estimate probability distribu- Many statistical models employ a mechanism for
tions over protein families and improves protein classiféstimating a probability distribution over a given al-

cation accuracy. phabet from a set of observations of that alphabet.
For generative protein homology approaches such
1 Introduction as hidden Markov models or profiles, this mecha-

nism is used for estimating the probability of ob-
Many successful approaches to modeling sequengggs/ing an amino acid in a certain portion of the
for computational biology problems have involveghodel given a set of observations of amino acids
statistical models. Typically these problems agg that position. Analogously, for some discrimina-
multi-class classification problems which involvgye statistical models such as sparse Markov trans-
classifying a sequence into one of a set of possilligcers, this mechanism is used for estimating the
classes. For example, the protein homology prgirobability over protein families in a certain portion
lem consists of classifying an unknown protein sgf the model given a set of observations of protein
quence into a protein family. Traditionally, thesgimilies. For estimating over amino acids, many ap-
— o _ _ proaches have been presented (see below). These
aciagey;’(‘;‘t’é?ns%ammg'gom'a' estimation, regularizers, aming,hr5aches can be applied to other alphabets such
TP'hF:)ne Number: (212) 939-7078 Fax Number: (435) 4083 protein families for use in discriminative mod-
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(=~ 2,500) than the size of the alphabet amino acidlse data. The parameters are set by using the EM
(~ 20). Because of the large alphabet, it is difficuétlgorithm to minimize an error function over train-
to apply some of the best performing approaches deg data. Since the EM algorithm is subject to lo-
veloped for amino acids. In this paper, we presentea maximum and there are a lot of parameters, it is
new efficient robust method to compute these prolery difficult to obtain with confidence the best set
ability distributions which performs well on largeof components from the data. In the case of amino
alphabets. The method uses a mixture of commaxrids, the estimation is possible and some very good
ancestors and has a straightforward Bayesian inmmponents have been discovered [22]. However,
pretation. the computation is much more difficult for large al-

Estimation of probabilities of amino acids fronhabets such as in the case of estimating probability
observed counts is a very well studied problem afligtributions over protein families. In the latest ver-
many methods have been proposed [8]. The sifion of the Pfam database, there are close to 2,500
plest method to estimate probabilities from couriotein families [28]. Even with a small number
is the maximum likelihood estimate. Although thigf components, the total number of parameters for
method performs well when there is an abundari@&ichlet mixtures will be very large and will be dif-
of data, it is problematic when there is very littlécult to optimize.
data or when the biological sequences’ alphabet iAnother set of methods are based on using substi-
large. For this reason, we want to incorporate prittion matrices [18, 25]. Substitution matrices have
information into the estimation. Intuitively, in inthe advantages that they explicitly encode the rela-
stances where we have few observed counts, treas between amino acids and can be easily com-
want to rely on the prior information more than iputed even for large alphabets. A problem with sub-
instances where we have more observed counts.stitution matrix-based methods is that each amino

The simplest way to incorporate prior informatiofcid has a fixed substitution probability with respect
into the probability estimation is to use the pseudi€ach other amino acid because the matrix is fixed.
count method. In this method, a vector of “virtualteuristic approaches to address these problems use
counts is added to the observed counts of amiﬁh@ substitution matrix to set a pSGUdOCOUﬂt vector
acids. Although this method is more robust than t9, 5, 18]. Although these methods perform well
simple maximum likelihood estimate when there 8 practice, they have little theoretical justification.

a small amount of data, a single pseudo-count vecOne approach to the problem of a fixed substitu-
tor cannot encode the relations between symbolgion matrix is presented by Gribskov and Veretnik
the alphabet such as groupings of amino acids or [fB4]. The approach estimates amino acid probabili-
lated protein families. These groupings are impdres by making an assumption that they were derived
tant because amino acids tend to appear in grofqesn a common ancestor and uses a substitution ma-
that share similar biochemical properties such as th& to obtain the probability estimates. Gribskov
hydrophobic group. The presence of one amino aeidd Veretnik first computed which of a set of sub-
in the group increases the likelihood of seeing othartution matrices fit the observed counts best using
amino acids from the same group. the measure of cross entropy. They typically used

A method that addresses these problems is mixset of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
tures of Dirichlet distributions [4, 27]. The expect2048 PAM matrices. Because they choose one of a
tion and the maximum aposteriori value of a (singl&et of possible substitution matrices, their model is
component) random variable from the Dirichlet dignore flexible.
tribution can be viewed as a smoothing process within this paper we present a mixture modektom-

a pseudo count. A mixture of Dirichlet distributionsnon ancestorsOur approach that builds upon and
can encode the grouping information by havinggeneralizes the method presented in [14] to allow
component in the mixture for each group. Hower efficient exact computation of a richer model.
ever, in general it is difficult to compute the optiln contrast to previous work on substitution-based
mal Dirichlet components (the pseudo-count vemethods, our method has a simple Bayesian inter-
tors) from the data. If there are 10 components pnetation and has three advantages over the Grib-
the mixture and there are 20 amino acids, there ak®v and Veretnik model [14]. The first is that our
about 200 parameters that need to be estimated frowdel is richer since we consider infinitely many
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possible matrices instead of 12 choices. Second, manber of observations in!, 22, ..., 2! which are
employ a set of priors that can be used to incorpdifferentfrom i is denoted byt = ¢ — n!. For con-
rate biological information into the model. Finallyyenience we define for alle 3, n) = n) = 0.
we derive an analytical solution for the weight of A major statistical tool in this paper is a mixture
each ancestor in our mixture as well as the possibledel. A mixture model is a combination of simpler
mutation rates. This analytical solution can be cormodels called base or ground models. Each base
puted efficiently in time that depends only on thmodel induces a probability estimate over events in
size of the alphabet. Y. Denote the prediction of thgh model onz® by
The mixture of common ancestors method is d%(z*). Each base model is associated with a weight
exact method for computing the probability distribwlenotedw,;. These weights reflect the importance
tion over a discrete alphabet given a set of obserV@d reliability) of each model in the mixture. That
counts that takes into account as a prior the rela-the highenw; is the more we “trust” thg model.
tions between elements of the alphabet. The methidie mixture weights are updated after each obser-
makes an assumption that the observations all wea¢ion as follows,
derived from a common ancestor through mutations. . . .
Given this assumption, if the common ancestor is wiT = wj Py(x') . 1)
known, as well as the mutation rate, we can easily . . _ .
compute the probability distribution. The observed this formulation the mixture weights atenor-
counts are used to induce a distribution over the pfalized The prediction given by the mixture model
sible ancestors and their rate of mutations. Put &h{h€ weighted sum of its base model constituents,

other way, since apriori, the common ancestor a tis, L (4
mutation rate are not known, we “hedge our bets” P(zt) = X w;by(@’) 2)
on the ancestor’s identity by maintaining a weighted >, wh ’

mixture over the possible ancestors and their here j ranges over all base models in the mix-

ﬁ;gﬂréaégi ﬁg%g&o‘ﬁt&eﬂfﬁ'@ﬂﬁ according to e. Note that there is an equivalent formulation in
Wi t P thod in th - text of . which the mixture weights are being normalized af-
© present our metnod In e context ol amifg, gach prediction while omitting the normalization

acids and later apply the method to compute prg 5m Equ. (2).

ability distributions over another larger alphabet ¢ : : o

: i~ 9 qu. (2) is a direct application of Bayes rule as-
(protein fam'l'es)' We present an efficient meth%‘bming that the models are statistically independent.
for computing the probability estimate. We perforijyije this assumption is not true in practice, one

experiments comparing our method versus Compaly, il yse Egs. (1) and (2). The formal prop-
ison methods over amino acid counts obtained fr ies of the Bayes inference algorithm in agnostic

an aligned database. We show the ability of thyingg j.e., settings in which the independence as-

_meth(_)d to handle large a_Iphabets if‘ expgriments_ ﬁfnption does not hold, have been studied exten-
ing this method as a basis for protein family classi S i

. ely in information theory, statistics, and learning
cation and compare the performance to other m sory (see for instance instance [16, 15, 26, 30, 11]
ods. and the references therein). An attractive prop-
erty of mixture models that we exploit in this pa-
. . per is the simple adaptation to new examples via
2 Preliminaries Equ. (1). The weight update procedure is compu-
tationally feasible so long as the computation time
Throughout the paper we use the following notaf the predictions of the base models is reasonable.
tion. We denote by the set of possible obserFurthermore, since the base models can be mixture
vations. For instance, in the case of nucleotide®dels themselves and the number of base models
¥ ={A,C,T,G}. A sequence of lengthof obser- may be infinite, as is the case in this paper, a special

vations is denoted by', 2%, ..., 2" wherez® € ¥ attention should be devoted to the design of efficient
for1 < s < t. The number of occurrences oinference and weight update procedures. In order to
i € Yin ' 2% ... 2" is denoted byn!, that is, compute the prediction of the model, we must be

nt = |{s|z* = i,1 < s < t}|. Analogously, the able to easily compute Equ. (2).

3



3 The common ancestor model tion in an alignment. This depends on the evolu-
, . . tionary distance of the common ancestor. If there is
The common ancestor r_node_l is well motivated in | very short evolutionary distance between the com-
ology and can be described in the context of proteify), 3ncestor and the observed sequence, then there
homology. In the protein homology problem, the pe very few mutations. However, if the evo-
goal is to determine which proteins are derived fromtionary distance is very large, there will be a sig-
the same common ancestor. . The common ancG cantly higher number of mutations. The evolu-
tor model makes the assumption that at SOME pQiy ary distance defines the probability of mutation.
in the past, each of the protein sequence in a 4R, model, we denote the probability of mutation
lly was derived from a common ancestor SequUeneGe. | ivewise, the probability that a mutation did not
That s, at each amino acid position in the sequenge. irisl — o
each observed amino acid occurs because of a mlﬁssuming.that we know the probability of muta-
tat_ion (or set of mutations) from a common amin[gbn as well as the common ancestor, we can obtain
acid ancesto_r. L ... ... aprobability distribution over amino acids. We de-
Important in estimating the probability distribup e this probability?, ... If we know that the com-

tions over amino acids is determining the commaefoy ancestor is and the mutation probability is,
ancestor. Because amino acids have different Ch%ﬁé‘ probability of observing an amino adié:

ical properties, different common ancestors mutate _ ‘
with different probabilities to different amino acids. Vi c: Po.(i) = aM. (3)
We can represent these probabilities in a mutation i=c: Po(i) = 1—a. (4)

matrix. A mutation matrix encodes the probabilities tati i be simplv obtained f
that a common ancestor mutates to another aminé' Mutation matrix can be simply obtained from a

acid given that a mutation occurredeEach row of standard substitution matrix. Let,, be thei, j ele-
the mutation matrix corresponds to a common dpent of a standard substitution matﬂ_zgsuch as the_
cestor. Each column of the matrix corresponds Qges from the BLOSUM of PAM families of substi-

the resulting amino acid. In general we denote 4fflON matrices in a form where each element is a
element in the mutation matri/; ;. This element conditional probability [18, 25]. In our framework,

o ‘ : : h row in the substitution matrix is a common an-
corresponds to the probability of thith amino acid ¢ row I the \ .
mutating to thejth amino acid if a mutation occursCESOr With a fixed mutation rate, denoted With |
Note that for alli M,; = 0 and, M, = 1. In a this insight we can now compute the corresponding

mutation matrix, the diagonal elements are all ze tation matrixAz;,; as follows. Our framework,

because we assume that a mutation occired.  described above, implies thsif; = 1 —a;. Further-
10re, since each off-diagonal element in the matrix

mutation matrix can easily be derived from a staf)-" I t the following transf .
dard substitution matrix as we show below. Using-i — %i/Vi; W€ getthe following transtormation,

the observed counts we will attempt to determine Sii if 4 £
M;; = {

()

the common ancestor which determines which row 6*51'# otherwise
of the matrix to use as the probability distribution.

A second factor in the probability estimation i&s we discuss in the next section, the fixed mu-
how likely a mutation is to occur at a given postation rate, implied by the; ;, is instead replaced
with a mixture of potential mutation rates where the

10f course there is the possibility that a multiple mutationgixture weights are automatically estimated by our
occurred and then the amino acid mutated back to the origiﬁsqlxture learning algorithm. Thus, our framework

amino acid. We can address this case and the case of mul . . .
mutations by defining mutations and non-mutationsin termst%{fl(iomat'caIIy adjusts the weights to the set of prob-

observations. If we observe the common ancestor, then we@gle mutation rates based on the data.

fine that a mutation did not occur even if the common ancestor

mutated to another amino acid and mutated back. Similarly, if .

we observe a different amino acid, we define this as a mutp- M xtures of common ances-
tion regardless of the actual number of mutations that occurred

from the original common ancestor. Thus the mutation matrix ~ {OI'S

itself gives the probability of observing an amino acid given . T ) )

its common ancestor. This is a reasonable definition, becah§€ probability distribution over amino acids de-
the mutation matrices are estimated using observed countfpends on two factors: the rate of mutatien,and
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the common ancestor Apriori, we do not know the Note that due to our definition of! the equation
common ancestor nor the mutation rate. Intuitivelgbove is given in terms of the predictions fdr!,
we want to estimate these values using the obseraed notz’. Also note that our definition of! and
data. We use a Bayesian mixture approach. iy implies thatP.(z') = 1/2M,,» whenz!' # ¢

Informally, we can estimate the mutation by thend P.(z') = 1/2 otherwise. Intuitively, the prior
spread of the amino acids. If the observed amipmbability, before we see any observation, is such
acid counts are concentrated on one amino aaltht the probability of mutation happening is equal
then we can intuitively say that the mutation rate is the total probability of any of the possible muta-
likely to be low, while if the observed amino acidion. This prior probability can be modified to re-
counts are spread among many amino acids, the riteet prior knowledge, as we describe below.
tation rate is likely to be high. Similarly, we can at- Eqgs. (8) and (9) conform to our intuitions for
tempt to estimate which amino acid is the commeimino acids. We can see that if we have observed
ancestor by the specific amino acids observed. many mutations in the observed amino acid counts,

Formally, we examine the observed counts fife probability of observing an amino acid other
each amino acid in the sequence. . ., z*. We use than the common ancestor is high. Likewise, if
the notation of Sec. 2 and denote the counts at tije observed few mutations in the observed amino
t of a given amino acid by »}. If the common an- acid counts, the probability of observing the com-
cestor isc we can expect the mutation rate to be lowion ancestor is high. Thus the spread of the amino
if n is high relative toi, = Y. nj. acids helps estimate the mutation rate.

For each common ancestor we maintain sev- e can incorporate some prior biological infor-
eral possible mutation rates. We denote the $étion into the probability estimate. Notice that
of its possible mutation rates for ancestorby the rate of mutation is estimated by the relative
R(c). For a given mutatiom € R(c), we can use number of observed mutations versus observed non-
Egs. (3) and (4) to compute the predictions. Wgutations. We can introduce a set of “virtual” ob-
build a mixture model as discussed in Sec. 2: Weryved counts for each common ancestor. These
associate a weight with each possible mutation ratgunts behave in a very similar way to pseudo-
w!, and the prediction of the mixture is the weightegsbunts. For ancestarwe definem, andn, to be

sum of the predictions of each model: the virtual counts of non-mutations and mutations,
. ; resp_ecf[ively_. These counts can be used to tune the

P.(a') = Y acR(c) Wae Lac(@’) (6) predictions in Egs. (8) and (9) to predict more ac-

¢ Y acR(c) Wa,e curately when there are few observed counts. The

way these virtual counts are incorporated into the
The weights are updated based on the performapeediction is a simple extension of the derivation of
of the model on the observed data. The models tkafs. (8) and (9) and is also described in App. A.
better predict the observed data will have a high@ur final predictions after incorporating the virtual
relative weight in the mixture. For each possibtounts are,
ancestor: and mutation rater € R(c), we use the
weight update described in Sec. 2, that is, ?t £ e P = M, mffﬁi; (10)

mc—i-nf:—i—l (11)

Me+mMe+t+2

W' = wy . Py o(2h) (7) o =c: P.(a')

In App. A we derive an efficient scheme for com-

puting the mixture over all possible mutation rates,
the prediction given by Equ. (6). For a commog,
ancestoi, the mixture’s predictions, which we gefg
by averaging over all mutation rates, is,

Because we do not know apriori the common an-
stor, we again apply the mixture technique and
aluate a weighted sum of models each with a dif-
rent common ancestor. For each common an-
cestor,c we have a weight at tim¢, denotedw?’.
The weightw!, reflects the total weight achieved av-

gt £ P(a) = % = M,;%%1 (8) eraging over all possible mutation ratesc R(c).
X X nf+f et The initial weight is set to be! and using the pre-
at = c: Pe(a") =y T G (9) dictions given by Egs. (10) and (11), we update the



weights as follows, component Dirichlet distribution with parametgr
whose prediction on*! is,
wett = wg Po(a) (12)
t+1) o ntxt-&-l + A

P =
5 (@ ENIS]

The prediction of the mixture at time P(z"), is (16)

defined to be:
. . Asthe number of observations_increas_e, t_his compo-
Pty = >eex we Pe(') _ (13) nent will converge to the maximum likelihood es-
docex W timate. We denote the initial weight of the back-
ground predictor bywk. Similar to the weight-
Since there are only 20 possible candidates foupdate of the ancestor models, the weight-update of
common ancestor for amino acid&( = 20), we the background model is%; " = w P5(x!).
can use Egs. (10) and (11) to compute the predictiorAdding the background model as a component to
of each common ancestor, while taking into accouhe mixture, we get that the prediction of the mixture
the mixture over the different mutations rates, aifqu. (13)) becomes,
obtain the final prediction of the mixture efficiently.
Furthermore, we can compute the mixture weights o whPp(z') + Y, whP.(x)
either incrementally (online) using Equ. (12) or, as (%) = wh + Y, w
shown in App. B, we can compute the weights in e
batch settings using the total counts as follows, e set the prior weight of this componeat,
- - \ to be relatively low compared to the priors for the
we = we [[=y Pe(7?) (14) common ancestors, since we would like the back-
1 (metnef D! (et A5 +D! (me . 32)! Il M"(15) 9round model to have a significant impact on the
¢ (metme DI meA DI AT e el overall prediction of the mixture only after we have
bserved non-negligible amounts of data. Thus, ini-
\dlly the prediction of the mixture will be domi-

(17)

Finally, we note that the above derivation can

easily generalized to the case where the pseu L
counts are non-integers. In case of real-valuBgted by the predictions of the common ancestor

pseudo-counts the factorial function in Equ. (15) f80dels because of their higher initial weight, but

replaced with the Gamma function. We further di§ventually may be dominated by the background
cuss this issue in the appendices. component if it systematically performs better than

the other components.

5 Incorporating default models g ysing biological information
One advantage of the mixture framework is that we :
can explicitly incorporate other phenomena into the to setthe priors
mixture. That is, the actual probability distributioln the common ancestor method, we have several
over amino acids can be dependent on more thamiables that define the prior probabilities. The pri-
just the evolutionary distance and common ancess are the initial counts for each common ancestor
tor. For instance, the probability distribution can des. and m.. We also have the initial weights for
pend on the neighboring amino acids or some otle@rch common ancestor . Finally, we have the ini-
structural constraints that are not taken into accotiat weight of the pseudo-count predictof, and the
in the model presented. Furthermore, in situatiomstial count\.
when there are vast amounts of data, we would likeWe can use biological information to set reason-
to “fall back” to a prediction model that is basedble values of many of the priors. We assume we are
solely on the empirical counts, namely, the maxgiven a substitution matrix. Typically if the substi-
mum likelihood model. tution matrix was obtained from a certain family of
In order to incorporate a background modelwe substitution matrices, there are members of the fam-
add a single component to the mixture along withilg which have empirically been shown to perform
smoothing parameter. Specifically, we add a sindlest. For example, in the BLOSUM family, one
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of the most commonly used matrices is the BL@ounts. For a small set of observed countse use
SUM50 matrix. We want to set,. andm, for each the method to estimate the probabilities over amino

component so that the default predictions will be thids P, (7). Intuitively, the better the method, the
predictions of the BLOSUMS50 matrix. This can bg|sser the estimaté’s(i) will be to the maximum

done by fixing the ratio between the the number gf . : : i)
virtual mutations versus conservations. The mag@f—e“hOOd estimate over the entire COIurﬁéﬁl'

t -
tude ofm, +1, defines how much weight the priors_ A Way to measure how close a method estimates
are given in the prediction. This can be set based!Bi$ Probability is by calculating the encoding cost
how much difference in evolutionary distances afé conditional entropy. The encoding cost for the

observed in the data set. samples in a columnt for a given method with es-
We set the values af! equal to the backgroundimateF’s(z) is given by:

probability of amino acid in the data set. The initial F,(i) X

weight of the background model}; should be set Hy(t) = =Y ==Zloga Py(i) . (18)

low relative to the weights of the componentsto o |

allow the method to perform well when there is littl§ o more accurate the estimate. the lower the en-
data. A reasonable value faris - or 0.05 in the ’

_ _ B coding cost. The minimum encoding cost is when
case of amino acids. the method’s estimate equals the maximum likeli-

hood estimateP, (i) = T+, We can measure the

i i iliti performance of a method by computing how much
7 ESt_Imatln_g the pI’ObabI“tIeS of higher the encoding cost is above this minimum.
amino acids This amount was referred to by Karplus as &xe

To evaluate the method presented in this paper, §&S €NIORy The excess entropy is called the rela-
measure the performance of the mixtures of co veé entropy or the Kullback-Leibler in information

mon ancestors on estimation of amino acid prodg€°"Y [6]- LetP and@ be two distributions over.
bilities and compare this to the performance of t en, the relative entropy between the distributions,

Dirichlet mixtures over the same data set. enotedD(Q||P), is defined as,

A framework for evaluating methods for prob- _ Qi)
ability estimation for amino acids is presented in D(P||Q) =>_Q(i)log (W)
[22]. In this section we follow Karplus’ notation ex

and experimental setting for evaluating and comk ut settingQ(i) = F,(i)/|F,| andP(i) = P,(i).
paring our mixture model of ancestors with previgi, .o yhe focus of this section is comparison to the

ously studied models. Karplus presents an informggee, o+ hropailistic estimators discussed in [22],
tion theoretic framework for measuring the effeQN

. : ve use the notation employed by Karplus.
tiveness of a method. Different methods for proba-y )15 examines the expected value of the en-
bility estimation are compared by independently e

timating probabilities of columns of multiple a"gn_c?c')ding cost when a sample of sizeis chosen.
ments from the BLOCKS database [19, 17]. We compute the entropy over all possible samples

; , f size k. This measures the performance of the
Using the notation from [22], we denote the tm%ethod aftel observations. This gives the follow-
count for each amino acidin a columnt by F(i).

If we use sequence weights such as those presemgc?mmpy of a column for a given sample size:
in [20], F(7) are not necessarily integers. The total H(t) = Z P(s|t)H,(t) , (19)

count for each column is denoteé#,| = >, Fi(i). a sample s, |s| =k
Using an entire column, we can estimate the prob-

abilities for each amino acid using the maximuthere P(s|t) is the probability of selecting sam-
likelihood estimate™®®) ple s from columnt. By averaging over the entire
|Fe|

database we obtain the encoding cost for a method

t
In practice, we usually only have accesstoas h a given sample size:

set of observed counts. The goal of the probabil-
ity estimation method is to obtain estimates over th Yot [ Fi [ H(t)
entire column using only the small set of observed”* — Y wum | F1|

(20)
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E i £ |Ft| E o5, 5|k P(S|t)Hs (t) Sample | CA-Mixture | Zefo-1 | Zero-0.0481] Pseudo | Dirichlet-S | Dirichlet-K
column sample s, |s|=

= 0 0.00633 | 012527 | 0.12527 | 000610 | 0.06123 0.00883
Zcolumn . | Ft| 1 002241 | 1.07961 | 0.20482 | 0.13925 | 0.05336 0.00115

2 0.05557 | 1.17080 | 0.18636 | 013720 | 0.02402 0.00757

3 009525 | 116480 | 0.16843 | 013097 | 0.01970 0.01471

Karplus presents an efficient method for comput- 4 010887 | 113144 | 015311 | 012350 | 002083 | 0.02740
. . . . 5 0.11337 1.09164 0.14203 0.11804 0.02455 0.03943
ing the entropy given in equation (20). By compar-
ing encoding costs between two methods, we
compare the performance of two methods.

Cfs‘éble 1: Excess entropy for different probability estima-

. tiPn methods under different sample sizes over BLOCKS
We perform our experiments over the same d a .
atabase. The encoding costs were computed over the

set that was used in [22]' The data consi EOCKSdatabaseforCA—Mixture,Zero—l,Zero-0.0481,and

of sets of observed counts of amino acids taksn ) : : _
seudo and were consistent with previously published results.

groemV\tlg(le E’ég%';i da;abg‘:ﬁicga‘]_gé ch]i.ficﬂ\:\(/aeiccilliirll’lﬁe encoding costs for Dirichlet-S and Dirichlet-K reported
9 9 P P 9 ege published results [22]. Note that the Dirichlet mixtures

scheme described in [20] with slight variations Priere obtained with a parameter search in order to minimize

sented in [27]. The data set was split into disjomtt the dataset. while the mixt ¢
training and test subsets. entropy olver e _iase , wnile the mI_X greg common ances-

For each experiment, we Compute equation (éass results are without parameter optimization.
for a different size of the samplewhere0 < k <
5. For each sample size, we compute the excess . . )
entropy of the methods over all possible sampl&s EXperiments with  protein
drawn from each column. We compare the perfor- families
mance of the mixture of common ancesto@®A¢
Mixture) versus several previously presented meths we have shown, the method presented is compa-
ods over the same data set. As baselines for comble in performance to other probability estimation
parison we examine twzero-offsemethods. Thesemethods over amino acids. However, the main ad-
methods are pseudo-count predictors with a fixeantage to the mixture of common ancestors is that
initial count for each symbol. We compute the rétcan handle large alphabets. We apply the mixture
sults for a zero-offset method with initial cout of common ancestors presented in this paper to the
(zero-) and with a initial count optimized for theestimation of probabilities over protein families.
dataset0481 (zero-0.048). We also compute the In the current version of the Pfam database, there
results of a pseudo-count predictgséudd with are approximately 2,500 protein families [28]. A
initial counts optimized for the data set and twiirichlet mixture over this alphabet would contain
Dirichlet mixtures. The first Dirichlet mixturesmany parameters making it difficult to optimize the
components were obtained from [27Difichlet- parameters over the data. If we assume that with a
S and the second set of componerisrichlet-K) 2,500 symbol alphabet, there are 100 components,
were obtained from [22]. All of the methods optithis corresponds to 250,000 parameters. The mix-
mized with a parameter search for the dataset astiee of common ancestors, however, does not re-
scribed in [22]. This gives the mixture of commoquire this kind of training because the necessary pa-
ancestors a significant disadvantage because werdideters can easily be computed directly from the
not perform a parameter search for the dataset. data.

The results of these experiments are given in Ta-Assuming that we have many sets of observed
ble 1. As we can see, the mixture of common aoceunts o we can derive a matrix and prior weights
cestors performs better than all of the compariststom the data. To derive a mutation matrix we use
methods except for the Dirichlet mixtures whicthe method presented in [18] to derive a substitu-
were optimized for the data. However, the methddn matrix and then convert it to a mutation matrix
presented in this paper required very little optimizasing the method presented in Sec. 3. We can set
tion in order to achieve these results. Also notiee prior component weights! to the background
that the mixture of common ancestors out performpeobabilities computed over the data.

Dirichlet-Sfor small samples. A more complete set We apply the mixture of common ancestors to
of experimental results as well as the mutation meastimating distributions over protein families. We
trix and parameter definition files are available ate interested in estimating probability distributions
http://www.cs.columbia.edu/compbio/mca/ . from short subsequences of amino acids that are



contained in the protein family and using these disFamily c M'Xt“rAe of | Pseudo-counts
tributions for protein classification [3, 1]. Probabilt5;5> Ommo_g 7 neestor 73
ity distributions over protein families conditional on 2_HacidDH 90 82
these short subsequences are used for protein farp-oxoaciddh .89 .89
ily classification using sparse Markov transducefs3-5-exonuclease .64 .34
(SMTs) [10]. Because SMTs are beyond the sco 3%@ aHSD % -gi
of this paper, we present a very simple model forSH%gH ‘94 56
protein family classification using subsequences anda giucanotrang 76 56
show how the method in this paper significantly im-4HPPDC .65 .54
proves the accuracy of protein classification. 5-FTHEcyc-lig 76 .65

In this classification model, we view a protein se-
quence as a set of the subsequences of amino a‘?éhle 2:ROG;, scores showing results of protein classifica-
that it contains. These subsequences are obtaifi§fbver the Pfam database using mixture of common ances-
by a sliding window. For these experiments, we uggs and pseudo-count predictors.
subsequences of fixed sigeFor each subsequence,
we compute a probability distribution over protein | _
families. This probability corresponds to how likelJNarix is of size2478 x 2478, _
the subsequence is to have originated from thad¥Ve split each family in the Pfam database into a
family. These probabilities are computed from tEining and testing portion by a ratio of 1. There
database of classified protein sequences. A prot@if & total 0B28, 984 protein sequences in the train-
is classified into a family by computing the probdld Setande, 029 sequences in the testing set. Over
bility distribution over protein families for each subth€ training portion, we compute the probabilities
sequences. For each family, we compute a score@¥gr protein families associated with each sequence
a protein by computing the normalized sum of log$ 6 @mino acids obtained by a sliding window over
of the probabilities of the subsequences in the ptB€ Proteins. Using these estimates we classify a
tein originating from that family. This correspondBrotein from the test set as follows. For each protein
to assuming that the subsequences are condition#fy €xtract the lengtlh amino acids from the pro-
independent. The protein is classified by determf§!n using a sliding window. For each protein fam-
ing which family has the highest score. ily, we compute a score which is the length normal-

The key to classifying proteins under this mod@ed product of the probabilities of the subsequences

is the estimation of the probability distribution ovefredicting that family. ‘We classify a protein into
protein families for each subsequence. We estimi}g amily with the highest score. For comparison,
the probabilities from the observed counts of tﬂée estimate the probabilities using both the mixture
subsequence in the database. We compare the rﬂ%ommon ?ncestorfs and the pseudo-count method
ture of common ancestors to a simple pseudo-cod’H'tt. avirtual count o 2,478 o

As we discussed earlier, because of the large aIphaTO evaluate the protein classification we compute

bet size, it is difficult to use Dirichlet mixtures orh€ ROG, score [13]. The ROg, score compute
this data. the normalized area under the curve that plots true

To create the mixture of COmMMonN ancestors, \%gsitives versus false positives up to 50 false pos-

first create a data set from the Pfam database ver%l'éﬁs' Table 2 compares the R@Gscores for the

: : 10 protein families in the Pfam database using
5.5. In this database, there are a total4f8 protein %;e two methods. The results for the complete Pfam
1

families. Our data set is created by obtaining all s ~tabase as well as the protein family mutation ma-
guences of length present in the database. For ea P y

sequence we obtain counts of how many protein iR(_ /?nd pararlnetsr dgfl/nltlor:).fllles a/are available at
each family contain that sequence. This gives us é&% WWW.Cs.columbia.eduicompbiorme

of counts of over protein families. There are a total

of 13,252, 465 distinct sequences of lengéhamino : :

acids giving a total ofl3, 252, 465 sets of counts.9 Discussion
Using this data we create a mutation matrix and $&€ have presented the mixture of common ances-
the prior weights as described above. The mutatitmms and applied it to estimating amino acid prob-

9



abilities and protein family probabilities from obmixture over mutation rate for a common ancestor
served counts. The method is effective for large al- We first discuss the case of a finite set of muta-
phabets. The mixture of common ancestors levéon rates and then derive a closed form at the limit
ages well-understood techniques for estimating sulb-infinite rates. The second part of our analysis is
stitution matrices from data [18, 25]. Using a varianses a specific form of the Dirichlet distribution (see
of these matricesnutation matricesthe method ex- for instance [7]) and can be skipped if the reader is
plicitly encodes the relationships between the syfamiliar with Bayesian inference using a conjugate
bols of the alphabet. family of distributions.

The mixture of common ancestors has several adGiven a common ancestoy we wish to estimate
vantages over previous methods. Unlike previoagprobability distribution over amino acids using the
substitution matrix-based methods, the mixture tife set of observed count$. We do not know the
common ancestors has a Bayesian interpretatiorutation probability. for the component. We thus
The method also performs well with both few angould use the observed number of mutations and
many observations. Unlike Dirichlet mixtures, theon-mutations to help determine what the mutation
mixture of common ancestors parameters can rage it and build a mixture of the possible mutation
easily computed from training data. This give thates as discuss in Sec. 2. Liefc) be a finite set of
advantage of being able to handle large alphabptssible mutation rates fetr We first assume that
such as protein families. R(c) is composed of evenly spaced rateqinl).

In addition, the method is strongly biologicallyrormally, let|R(c)| = n then R(c) = {i/n|l <
motivated. The method builds on the model prée-< n — 1}. Eacha € R(c) constitute a compo-
sented by Gribskov and Veretnik which can be deent in the mixture. The weight of @ after ¢ ob-
scribed in our context. [14]. The Gribskov andervations{!,...,z!) is denoted byw! . Its initial
Veretnik model used a common ancestor model witreight,w! , is set to a predefined value and is called
a notion of evolutionary distance. They first cona prior weight.
puted which of a set of matrices fit the observedEach possible rate € R(c¢) induces a probabil-
counts best using cross entropy which in our framigy distribution overX as given by Egs. (3) and (4).
work, is equivalent to choosing an evolutionary digo remind the reader, after each observatigrthe
tance. Once they choose a matrix, they apply a mixeight is updated according to the component’s pre-
ture over the common ancestor (rows) of the matrgiction, namelyw:™ = w! P, .(z!). Unraveling
Our method has three advantages. The first is tthas recursive weight update we get that the weight
our model is richer because the evolutionary disf the component correspondingdacaftert obser-
tance is continuous versus one of 12 choices speations is

ified by the choice of matrices. Second, we have a ¢

rich set of priors that can be used to incorporate bi- /! = H P,.o(2%)

ological information into the predictor. Finally, we s=1

have an efficient analytical solution to the predic- = wl(l—a)m 11 (aMc,j)”§ 1)

tion over all possible evolutionary distances versus ie
the expensive computation in their method. o ] ) _ )

Future work involves investigating what kinds of he prediction of the entire mixture is obtained by
mutation matrices and which prior weights lead &9mputing weighted average of the predictions nor-
optimal performance under different alphabets. Of@lized by the total sum of the weights,

direction of future work is to compute mutation tHlp (it

L . T, . 1\ ZagR(c) Wg' Pa,e(zth)
matrices directly from the data optimized for this Po(z") = D Wb
model as opposed to computing them from known e
substitution matrices. _ Yeriwall=a)me T (aMc ;)" Pac(a't) 22)
Appendices > e ne wh (L) TT, (aM, ;)"

A Computing the prediction of o _
Using the definition ofi’ we rewrite P.(z'*') as

a single ancestor model llows
In this section we describe the derivation of an effi- ’

cient procedure for computing the prediction of the P.(z!t) =

10



t

- (H#c MQ;) Yy (1-) o2z p. @+ w.  In the general case wherga) is not the uniform

ot S distribution, we can still compute efficiently the in-
(H#CM«?‘) Daente (I aize S wy tegrals overy analytically in some cases. One par-
e (1m0)"t 0P Py () w) 23 tiqu_larly cc_)nv_enient prior di_stribution for is the
- et (0" a7 E w] : (23) Dirichlet distribution [7], which also has good for-

mal properties. In our setting the specific Dirichlet
Equ. (23) can be computed efficiently|iR(c)| is distribution employs two hyper-parameters which
finite and relatively small. If we would like to workwe denote byn, ands,. and the form ofu(«) be-
with continuously many values fer we replace the comes,
summations with the integrals and the prior weights pla) o (1 —a)™a™ .

w! with aprior distributiony(a) and get, _ y
These hyper-parameters can viewed as an additional

1 [} Pac(@™) (1= a)™ o™ p(a) da set of pseudo-counts which biases the mixture’s pre-
P(z) = =2 7f1 (1 o)™ o p(a) d (24) diction. The larger these pseudo-counts are the more
0 a)te atte pla) da we rely on the prior knowledge. . andm, are

We now need to consider two cases dependifff9ers, then Egs. (25) and (26) now become,

whetherz!*! #£ ¢ or "' = c. In the first case

1
M, t+1

we get gt e P(atth) = J, 5T I
fo (1—a)metne gMetic 4o

(1—a)mﬂ+"i aﬁ“f+ii+1 da

{30)

1 t =t
fo aM,_ i1 (1—a)"c a™c p(o) do J"l (l_a)mc+ni+l ametnl go
— : 0

t+1 . P(2tT! Y 1 _ . 1 _ .
v Aen B Jy (1=a)"% 0™ u(a) da ToTe e o am ot g - Y
_ fol M, .t+1 (1-a)"t a™et! y(a) da (25) . .
- [T (-a)"t o™t u(a) da and using Equ. (27) again, we get
and in the second case we get P e PatY) = My gen St (39)
©ote = ert mormoir2
t =t t+1 t+1 ctni+1
P s gttty = Jalze) 0= 0 ) da #tt=c: R = ginie G
' ¢ fol (l—a)"g ottt p(or) do
[F (=) 0t u(a) da In the more general case when the pseudo-counts
= °fl (ot o amaa  28) are real-valued we need replace the factorial func-
° tion with the Gamma function. Nonetheless, the fi-

To further simplify Egs. (25) and (26) we need tBal form of prediction is remains the same and it is
choose a specific density function fofe). Let us Still given by Egs. (32) and (33). We omit the details
first analyze a simple case whegé) is the uni- of the derivation since it is a straightforward gener-

form distribution over0, 1]. We use the identity, ~alization of the derivation above using the properties
of the Gamma function which are described in [7].

27) B Batch computation of the
mixture weights
_The mixture weight for a given common ancestor

m!n!

1
"1l—2x)"de = —— .
/oa7 (1= a)de (m+n+1)!

Note also that from definition we get that+ n’, =
t. Then, Egs. (25) and (26) simplify to,

IS
t
ty st ' t =t ' .
t4+1 . 1y n ! (ig+1)!  (ng+ng+1)!
e Fer Pe(@) = M gen (i +AE+1+1)  ntl Akl wi“ = wi H Pc($z) , (34)
=t >
= Mc,mtJrl n{fkcr"j:c1+2 =1
_ M. oy, Pt 28y With P.(z*) defined in Egs. (32) and (33). We want
= ¢,z t+2
. pugttly = (D! ALl (ni+Al41)! to show that
e = Pe(z) = (REAAETI+D)  nklall
_ nt+1 witl = ! (me +nf + 1)! (e + 7g + 2)! (e + 1 + 2)! HM"f
- ni4+nl+2 ¢ C (me + e +t+2)! (me + 1)! (e + 1)! o
- netl (29) (35)

t+2
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Since the W€ightu£+1 is a product of the predic-[n] Yoav Freund. Predicting a binary sequence almost as well as the op-

; itic i i ; _ timal biased coin. IrProceedings of the Ninth Annual Conference on
tions, it is invariant to the ordering of the observa- -0 B P g Theorgo9s.

tions. We thus can reorder the observations as fol- _ . . _ _
lows. Letz!, ..., 2" be all of the observations of thé'? i, Srson & . Al Sege - c o Frofie analysigethods in
non-mutations (i.e., for < s <n!, 2' = ¢) and let _ _ , _

M. Gribskov and N. L. Robinson. Use of receiver operating charac-

nt+1 ¢ .. . 413]
xreth LT be the remaining observations. We can teristic (ROC) analysis to evaluate sequence match@nputers and
also factor out thel/..; terms. In this ordering the =~ Chemistry 20(1):25-33, 1996.

mixture Weight is then [14] M. Gribskov and S. Veretnik. Identification of sequence patterns with
profile analysis Methods in Enzymologp66:198-212, 1996.
A . t 5 ) ‘ 115] David Haussler and Manfred Opper. Mutual information, metric en-
wtt! = ! me+t+1 H Mme+j—ne+1 H i tropy, and cumulative relative entropy risnnals of Statistics25(6),
¢ c Lme e +it2 mc+mc+j+2¢ el December 1997.
1= j:nc+1 c

- _ 16] David Haussler and Manfred Oppefhe Mathematics of Information

¢ ¢ ¢

L (Me +nf + DM + 37, nf —né +1)!(Me +me +2)! H ”zl Coding, Extraction and Distributigrchapter Worst case prediction over
c,l

= w, (me + D)(me + 1)!(me + mc + Zk ni +2)! " sequences under log loss. Springer Verlag, 1998.
t 1V At 1) . 21 + [17] J. G. Henikoff and S. Henikoff. Blocks database and its applications.
_ prme £ e+ D! (e + 0 + D! (e + me +2) [] 2 - Methods in Enzymologges, 1996.
(me 4+ 1)! (M + 1) (me +mc + 1+ 2)! p ©

C
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