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Abstract
Accurately estimating probabilities from observations is
important for probabilistic-based approaches to prob-
lems in computational biology. In this paper we present
a biologically-motivated method for estimating probabil-
ity distributions over discrete alphabets from observa-
tions using a mixture model of common ancestors. The
method is an extension of substitution matrix-based prob-
ability estimation methods. In contrast to previous sub-
stitution matrix-based methods, our method has a simple
Bayesian interpretation. The method presented in this
paper has the advantage over Dirichlet mixtures that it is
both effective and simple to compute for large alphabets.
The method is applied to estimate amino acid probabil-
ities based on observed counts in an alignment and is
shown to perform comparable to previous methods. The
method is also applied to estimate probability distribu-
tions over protein families and improves protein classifi-
cation accuracy.

1 Introduction
Many successful approaches to modeling sequences
for computational biology problems have involved
statistical models. Typically these problems are
multi-class classification problems which involve
classifying a sequence into one of a set of possible
classes. For example, the protein homology prob-
lem consists of classifying an unknown protein se-
quence into a protein family. Traditionally, these
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models are generative models where a model is
trained over one class of data. An unknown protein
sequence is evaluated by each protein family model
to determine which protein family is most likely to
have generated the protein sequence. These models
include approaches such as hidden Markov model-
based approaches [24, 9, 2, 23], probabilistic suffix
tree-based approaches [3, 1] and profiles-based ap-
proaches [12]. Recently discriminative models have
been applied to protein homology and approaches
have included using support vector machines [21]
and sparse Markov transducer approach [10]. In dis-
criminative models, the model is trained over data
containing multiple classes. These discriminative
approaches directly classify an unknown protein se-
quence into a family.

Many statistical models employ a mechanism for
estimating a probability distribution over a given al-
phabet from a set of observations of that alphabet.
For generative protein homology approaches such
as hidden Markov models or profiles, this mecha-
nism is used for estimating the probability of ob-
serving an amino acid in a certain portion of the
model given a set of observations of amino acids
at that position. Analogously, for some discrimina-
tive statistical models such as sparse Markov trans-
ducers, this mechanism is used for estimating the
probability over protein families in a certain portion
of the model given a set of observations of protein
families. For estimating over amino acids, many ap-
proaches have been presented (see below). These
approaches can be applied to other alphabets such
as protein families for use in discriminative mod-
els. However, one problem is that the size of the al-
phabet is for protein families is significantly larger
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(� 2; 500) than the size of the alphabet amino acids
(� 20). Because of the large alphabet, it is difficult
to apply some of the best performing approaches de-
veloped for amino acids. In this paper, we present an
new efficient robust method to compute these prob-
ability distributions which performs well on large
alphabets. The method uses a mixture of common
ancestors and has a straightforward Bayesian inter-
pretation.

Estimation of probabilities of amino acids from
observed counts is a very well studied problem and
many methods have been proposed [8]. The sim-
plest method to estimate probabilities from counts
is the maximum likelihood estimate. Although this
method performs well when there is an abundance
of data, it is problematic when there is very little
data or when the biological sequences’ alphabet is
large. For this reason, we want to incorporate prior
information into the estimation. Intuitively, in in-
stances where we have few observed counts, we
want to rely on the prior information more than in
instances where we have more observed counts.

The simplest way to incorporate prior information
into the probability estimation is to use the pseudo-
count method. In this method, a vector of “virtual”
counts is added to the observed counts of amino
acids. Although this method is more robust than the
simple maximum likelihood estimate when there is
a small amount of data, a single pseudo-count vec-
tor cannot encode the relations between symbols in
the alphabet such as groupings of amino acids or re-
lated protein families. These groupings are impor-
tant because amino acids tend to appear in groups
that share similar biochemical properties such as the
hydrophobic group. The presence of one amino acid
in the group increases the likelihood of seeing other
amino acids from the same group.

A method that addresses these problems is mix-
tures of Dirichlet distributions [4, 27]. The expecta-
tion and the maximum aposteriori value of a (single-
component) random variable from the Dirichlet dis-
tribution can be viewed as a smoothing process with
a pseudo count. A mixture of Dirichlet distributions
can encode the grouping information by having a
component in the mixture for each group. How-
ever, in general it is difficult to compute the opti-
mal Dirichlet components (the pseudo-count vec-
tors) from the data. If there are 10 components in
the mixture and there are 20 amino acids, there are
about 200 parameters that need to be estimated from

the data. The parameters are set by using the EM
algorithm to minimize an error function over train-
ing data. Since the EM algorithm is subject to lo-
cal maximum and there are a lot of parameters, it is
very difficult to obtain with confidence the best set
of components from the data. In the case of amino
acids, the estimation is possible and some very good
components have been discovered [22]. However,
the computation is much more difficult for large al-
phabets such as in the case of estimating probability
distributions over protein families. In the latest ver-
sion of the Pfam database, there are close to 2,500
protein families [28]. Even with a small number
of components, the total number of parameters for
Dirichlet mixtures will be very large and will be dif-
ficult to optimize.

Another set of methods are based on using substi-
tution matrices [18, 25]. Substitution matrices have
the advantages that they explicitly encode the rela-
tions between amino acids and can be easily com-
puted even for large alphabets. A problem with sub-
stitution matrix-based methods is that each amino
acid has a fixed substitution probability with respect
to each other amino acid because the matrix is fixed.
Heuristic approaches to address these problems use
the substitution matrix to set a pseudocount vector
[29, 5, 18]. Although these methods perform well
in practice, they have little theoretical justification.

One approach to the problem of a fixed substitu-
tion matrix is presented by Gribskov and Veretnik
[14]. The approach estimates amino acid probabili-
ties by making an assumption that they were derived
from a common ancestor and uses a substitution ma-
trix to obtain the probability estimates. Gribskov
and Veretnik first computed which of a set of sub-
stitution matrices fit the observed counts best using
the measure of cross entropy. They typically used
a set of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048 PAM matrices. Because they choose one of a
set of possible substitution matrices, their model is
more flexible.

In this paper we present a mixture model ofcom-
mon ancestors. Our approach that builds upon and
generalizes the method presented in [14] to allow
for efficient exact computation of a richer model.
In contrast to previous work on substitution-based
methods, our method has a simple Bayesian inter-
pretation and has three advantages over the Grib-
skov and Veretnik model [14]. The first is that our
model is richer since we consider infinitely many
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possible matrices instead of 12 choices. Second, we
employ a set of priors that can be used to incorpo-
rate biological information into the model. Finally,
we derive an analytical solution for the weight of
each ancestor in our mixture as well as the possible
mutation rates. This analytical solution can be com-
puted efficiently in time that depends only on the
size of the alphabet.

The mixture of common ancestors method is an
exact method for computing the probability distribu-
tion over a discrete alphabet given a set of observed
counts that takes into account as a prior the rela-
tions between elements of the alphabet. The method
makes an assumption that the observations all were
derived from a common ancestor through mutations.
Given this assumption, if the common ancestor is
known, as well as the mutation rate, we can easily
compute the probability distribution. The observed
counts are used to induce a distribution over the pos-
sible ancestors and their rate of mutations. Put an-
other way, since apriori, the common ancestor and
mutation rate are not known, we “hedge our bets”
on the ancestor’s identity by maintaining a weighted
mixture over the possible ancestors and their mu-
tation rates and show predictions according to the
mixture can be computed efficiently.

We present our method in the context of amino
acids and later apply the method to compute prob-
ability distributions over another larger alphabet
(protein families). We present an efficient method
for computing the probability estimate. We perform
experiments comparing our method versus compar-
ison methods over amino acid counts obtained from
an aligned database. We show the ability of the
method to handle large alphabets in experiments us-
ing this method as a basis for protein family classifi-
cation and compare the performance to other meth-
ods.

2 Preliminaries

Throughout the paper we use the following nota-
tion. We denote by� the set of possible obser-
vations. For instance, in the case of nucleotides
� = fA;C; T;Gg. A sequence of lengtht of obser-
vations is denoted byx1; x2; : : : ; xt wherexs 2 �
for 1 � s � t. The number of occurrences of
i 2 � in x1; x2; : : : ; xt is denoted bynti, that is,
nti = jfsjxs = i; 1 � s � tgj. Analogously, the

number of observations inx1; x2; : : : ; xt which are
differentfrom i is denoted by~nti = t� nti. For con-
venience we define for alli 2 �, n0i = ~n0i = 0.

A major statistical tool in this paper is a mixture
model. A mixture model is a combination of simpler
models called base or ground models. Each base
model induces a probability estimate over events in
�. Denote the prediction of thejth model onxs by
Pj(x

s). Each base model is associated with a weight
denotedwj. These weights reflect the importance
(or reliability) of each model in the mixture. That
is, the higherwj is the more we “trust” thej model.
The mixture weights are updated after each obser-
vation as follows,

wt+1
j = wt

j Pj(x
t) : (1)

In this formulation the mixture weights areunnor-
malized. The prediction given by the mixture model
is the weighted sum of its base model constituents,
that is,

P (xt) =

P
j w

t
jPj(x

t)P
j w

t
j

; (2)

where j ranges over all base models in the mix-
ture. Note that there is an equivalent formulation in
which the mixture weights are being normalized af-
ter each prediction while omitting the normalization
from Equ. (2).

Equ. (2) is a direct application of Bayes rule as-
suming that the models are statistically independent.
While this assumption is not true in practice, one
can still use Eqs. (1) and (2). The formal prop-
erties of the Bayes inference algorithm in agnostic
settings, i.e., settings in which the independence as-
sumption does not hold, have been studied exten-
sively in information theory, statistics, and learning
theory (see for instance instance [16, 15, 26, 30, 11]
and the references therein). An attractive prop-
erty of mixture models that we exploit in this pa-
per is the simple adaptation to new examples via
Equ. (1). The weight update procedure is compu-
tationally feasible so long as the computation time
of the predictions of the base models is reasonable.
Furthermore, since the base models can be mixture
models themselves and the number of base models
may be infinite, as is the case in this paper, a special
attention should be devoted to the design of efficient
inference and weight update procedures. In order to
compute the prediction of the model, we must be
able to easily compute Equ. (2).
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3 The common ancestor model
The common ancestor model is well motivated in bi-
ology and can be described in the context of protein
homology. In the protein homology problem, the
goal is to determine which proteins are derived from
the same common ancestor. The common ances-
tor model makes the assumption that at some point
in the past, each of the protein sequence in a fam-
ily was derived from a common ancestor sequence.
That is, at each amino acid position in the sequence,
each observed amino acid occurs because of a mu-
tation (or set of mutations) from a common amino
acid ancestor.

Important in estimating the probability distribu-
tions over amino acids is determining the common
ancestor. Because amino acids have different chem-
ical properties, different common ancestors mutate
with different probabilities to different amino acids.
We can represent these probabilities in a mutation
matrix. A mutation matrix encodes the probabilities
that a common ancestor mutates to another amino
acid given that a mutation occurred. Each row of
the mutation matrix corresponds to a common an-
cestor. Each column of the matrix corresponds to
the resulting amino acid. In general we denote an
element in the mutation matrixMi;j. This element
corresponds to the probability of theith amino acid
mutating to thejth amino acid if a mutation occurs.
Note that for alli Mi;i = 0 and

P
kMi;k = 1. In a

mutation matrix, the diagonal elements are all zeros
because we assume that a mutation occurred.1 A
mutation matrix can easily be derived from a stan-
dard substitution matrix as we show below. Using
the observed counts we will attempt to determine
the common ancestor which determines which row
of the matrix to use as the probability distribution.

A second factor in the probability estimation is
how likely a mutation is to occur at a given posi-

1Of course there is the possibility that a multiple mutations
occurred and then the amino acid mutated back to the original
amino acid. We can address this case and the case of multiple
mutations by defining mutations and non-mutations in terms of
observations. If we observe the common ancestor, then we de-
fine that a mutation did not occur even if the common ancestor
mutated to another amino acid and mutated back. Similarly, if
we observe a different amino acid, we define this as a muta-
tion regardless of the actual number of mutations that occurred
from the original common ancestor. Thus the mutation matrix
itself gives the probability of observing an amino acid given
its common ancestor. This is a reasonable definition, because
the mutation matrices are estimated using observed counts.

tion in an alignment. This depends on the evolu-
tionary distance of the common ancestor. If there is
a very short evolutionary distance between the com-
mon ancestor and the observed sequence, then there
will be very few mutations. However, if the evo-
lutionary distance is very large, there will be a sig-
nificantly higher number of mutations. The evolu-
tionary distance defines the probability of mutation.
In our model, we denote the probability of mutation
�. Likewise, the probability that a mutation did not
occur is1��.

Assuming that we know the probability of muta-
tion as well as the common ancestor, we can obtain
a probability distribution over amino acids. We de-
note this probabilityP�;c. If we know that the com-
mon ancestor isc and the mutation probability is�,
the probability of observing an amino acidi is:

8i 6= c : P�;c(i) = �Mc;i (3)
i = c : P�;c(i) = 1� � : (4)

A mutation matrix can be simply obtained from a
standard substitution matrix. LetSi;j be thei; j ele-
ment of a standard substitution matrixS, such as the
ones from the BLOSUM of PAM families of substi-
tution matrices in a form where each element is a
conditional probability [18, 25]. In our framework,
each row in the substitution matrix is a common an-
cestor with a fixed mutation rate, denoted�i. With
this insight we can now compute the corresponding
mutation matrixMi;j as follows. Our framework,
described above, implies thatSi;i = 1��i. Further-
more, since each off-diagonal element in the matrix
Si;j = �iMi;j we get the following transformation,

Mi;j =

(
Si;j

1�Si;i
if i 6= j

0 otherwise
(5)

As we discuss in the next section, the fixed mu-
tation rate, implied by theSi;i, is instead replaced
with a mixture of potential mutation rates where the
mixture weights are automatically estimated by our
mixture learning algorithm. Thus, our framework
automatically adjusts the weights to the set of prob-
able mutation rates based on the data.

4 Mixtures of common ances-
tors

The probability distribution over amino acids de-
pends on two factors: the rate of mutation,�, and
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the common ancestorc. Apriori, we do not know the
common ancestor nor the mutation rate. Intuitively,
we want to estimate these values using the observed
data. We use a Bayesian mixture approach.

Informally, we can estimate the mutation by the
spread of the amino acids. If the observed amino
acid counts are concentrated on one amino acid,
then we can intuitively say that the mutation rate is
likely to be low, while if the observed amino acid
counts are spread among many amino acids, the mu-
tation rate is likely to be high. Similarly, we can at-
tempt to estimate which amino acid is the common
ancestor by the specific amino acids observed.

Formally, we examine the observed counts of
each amino acid in the sequencex1; : : : ; xt. We use
the notation of Sec. 2 and denote the counts at time
t of a given amino acidi by nti. If the common an-
cestor isc we can expect the mutation rate to be low
if ntc is high relative to~ntc =

P
i6=c n

t
i.

For each common ancestorc, we maintain sev-
eral possible mutation rates. We denote the set
of its possible mutation rates for ancestorc by
R(c). For a given mutation� 2 R(c), we can use
Eqs. (3) and (4) to compute the predictions. We
build a mixture model as discussed in Sec. 2: We
associate a weight with each possible mutation rate,
wt
� and the prediction of the mixture is the weighted

sum of the predictions of each model:

Pc(x
t) =

P
�2R(c) w

t
�;c P�;c(x

t)P
�2R(c) w�;c

(6)

The weights are updated based on the performance
of the model on the observed data. The models that
better predict the observed data will have a higher
relative weight in the mixture. For each possible
ancestorc and mutation rate� 2 R(c), we use the
weight update described in Sec. 2, that is,

wt+1
�;c = w�;c P�;c(x

t) (7)

In App. A we derive an efficient scheme for com-
puting the mixture over all possible mutation rates
the prediction given by Equ. (6). For a common
ancestorc, the mixture’s predictions, which we get
by averaging over all mutation rates, is,

xt+1 6= c : Pc(x
t+1) = Mc;i

P
j 6=c

ntj+1P
k
nt
k
+2

= Mc;i
~ntc+1
t+2 (8)

xt+1 = c : Pc(x
t+1) =

ntc+1P
k
nt
k
+2

=
ntc+1
t+2 : (9)

Note that due to our definition ofnti the equation
above is given in terms of the predictions forxt+1,
and notxt. Also note that our definition ofn0i and
~n0i implies thatPc(x1) = 1=2Mc;x1 whenx1 6= c
andPc(x1) = 1=2 otherwise. Intuitively, the prior
probability, before we see any observation, is such
that the probability of mutation happening is equal
to the total probability of any of the possible muta-
tion. This prior probability can be modified to re-
flect prior knowledge, as we describe below.

Eqs. (8) and (9) conform to our intuitions for
amino acids. We can see that if we have observed
many mutations in the observed amino acid counts,
the probability of observing an amino acid other
than the common ancestor is high. Likewise, if
we observed few mutations in the observed amino
acid counts, the probability of observing the com-
mon ancestor is high. Thus the spread of the amino
acids helps estimate the mutation rate.

We can incorporate some prior biological infor-
mation into the probability estimate. Notice that
the rate of mutation is estimated by the relative
number of observed mutations versus observed non-
mutations. We can introduce a set of “virtual” ob-
served counts for each common ancestor. These
counts behave in a very similar way to pseudo-
counts. For ancestorc we definemc and ~mc to be
the virtual counts of non-mutations and mutations,
respectively. These counts can be used to tune the
predictions in Eqs. (8) and (9) to predict more ac-
curately when there are few observed counts. The
way these virtual counts are incorporated into the
prediction is a simple extension of the derivation of
Eqs. (8) and (9) and is also described in App. A.
Our final predictions after incorporating the virtual
counts are,

xt+1 6= c : Pc(x
t+1) = Mc;i

~mc+~ntc+1
mc+ ~mc+t+2

(10)

xt+1 = c : Pc(x
t+1) = mc+ntc+1

mc+~mc+t+2
(11)

Because we do not know apriori the common an-
cestor, we again apply the mixture technique and
evaluate a weighted sum of models each with a dif-
ferent common ancestor. For each common an-
cestor,c we have a weight at timet, denotedwt

c.
The weightwt

c reflects the total weight achieved av-
eraging over all possible mutation rates� 2 R(c).
The initial weight is set to bew1

c and using the pre-
dictions given by Eqs. (10) and (11), we update the
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weights as follows,

wt+1
c = wt

c Pc(x
t) (12)

The prediction of the mixture at timet, P (xt), is
defined to be:

P (xt) =

P
c2� wt

c Pc(x
t)P

c2� wt
c

: (13)

Since there are only 20 possible candidates for a
common ancestor for amino acids (j�j = 20), we
can use Eqs. (10) and (11) to compute the prediction
of each common ancestor, while taking into account
the mixture over the different mutations rates, and
obtain the final prediction of the mixture efficiently.
Furthermore, we can compute the mixture weights
either incrementally (online) using Equ. (12) or, as
shown in App. B, we can compute the weights in
batch settings using the total counts as follows,

w
t+1
c = w

1
c

Qt
s=1 Pc(x

s) (14)

= w
1
c

(mc+ntc+1)! ( ~mc+~ntj+1)! (mc+ ~mc+2)!

(mc+ ~mc+t+2)! (mc+1)! ( ~mc+1)!

Q
l 6=cM

nt
l

c;l :(15)

Finally, we note that the above derivation can be
easily generalized to the case where the pseudo-
counts are non-integers. In case of real-valued
pseudo-counts the factorial function in Equ. (15) is
replaced with the Gamma function. We further dis-
cuss this issue in the appendices.

5 Incorporating default models
One advantage of the mixture framework is that we
can explicitly incorporate other phenomena into the
mixture. That is, the actual probability distribution
over amino acids can be dependent on more than
just the evolutionary distance and common ances-
tor. For instance, the probability distribution can de-
pend on the neighboring amino acids or some other
structural constraints that are not taken into account
in the model presented. Furthermore, in situations
when there are vast amounts of data, we would like
to “fall back” to a prediction model that is based
solely on the empirical counts, namely, the maxi-
mum likelihood model.

In order to incorporate a background modelB, we
add a single component to the mixture along with a
smoothing parameter. Specifically, we add a single

component Dirichlet distribution with parameter�
whose prediction onxt+1 is,

PB(x
t+1) =

ntxt+1 + �

t + j�j�
: (16)

As the number of observations increase, this compo-
nent will converge to the maximum likelihood es-
timate. We denote the initial weight of the back-
ground predictor byw1

B. Similar to the weight-
update of the ancestor models, the weight-update of
the background model iswt+1

B = wt
BP

t
B(x

t).
Adding the background model as a component to

the mixture, we get that the prediction of the mixture
(Equ. (13)) becomes,

P (xt) =
wt
BPB(x

t) +
P

cw
t
cPc(x

t)

wt
B +

P
cwt

c

: (17)

We set the prior weight of this componentw1
B

to be relatively low compared to the priors for the
common ancestors, since we would like the back-
ground model to have a significant impact on the
overall prediction of the mixture only after we have
observed non-negligible amounts of data. Thus, ini-
tially the prediction of the mixture will be domi-
nated by the predictions of the common ancestor
models because of their higher initial weight, but
eventually may be dominated by the background
component if it systematically performs better than
the other components.

6 Using biological information
to set the priors

In the common ancestor method, we have several
variables that define the prior probabilities. The pri-
ors are the initial counts for each common ancestor
mc and ~mc. We also have the initial weights for
each common ancestorw1

c . Finally, we have the ini-
tial weight of the pseudo-count predictorw1

B and the
initial count�.

We can use biological information to set reason-
able values of many of the priors. We assume we are
given a substitution matrix. Typically if the substi-
tution matrix was obtained from a certain family of
substitution matrices, there are members of the fam-
ily which have empirically been shown to perform
best. For example, in the BLOSUM family, one
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of the most commonly used matrices is the BLO-
SUM50 matrix. We want to setmc and ~mc for each
component so that the default predictions will be the
predictions of the BLOSUM50 matrix. This can be
done by fixing the ratio between the the number of
virtual mutations versus conservations. The magni-
tude ofmc+ ~mc defines how much weight the priors
are given in the prediction. This can be set based on
how much difference in evolutionary distances are
observed in the data set.

We set the values ofw1
i equal to the background

probability of amino acidi in the data set. The initial
weight of the background modelw1

B should be set
low relative to the weights of the componentsw1

i to
allow the method to perform well when there is little
data. A reasonable value for� is 1

j�j
or 0:05 in the

case of amino acids.

7 Estimating the probabilities of
amino acids

To evaluate the method presented in this paper, we
measure the performance of the mixtures of com-
mon ancestors on estimation of amino acid proba-
bilities and compare this to the performance of the
Dirichlet mixtures over the same data set.

A framework for evaluating methods for prob-
ability estimation for amino acids is presented in
[22]. In this section we follow Karplus’ notation
and experimental setting for evaluating and com-
paring our mixture model of ancestors with previ-
ously studied models. Karplus presents an informa-
tion theoretic framework for measuring the effec-
tiveness of a method. Different methods for proba-
bility estimation are compared by independently es-
timating probabilities of columns of multiple align-
ments from the BLOCKS database [19, 17].

Using the notation from [22], we denote the total
count for each amino acidi in a columnt by Ft(i).
If we use sequence weights such as those presented
in [20], Ft(i) are not necessarily integers. The total
count for each column is denotedjFtj =

P
i Ft(i).

Using an entire column, we can estimate the prob-
abilities for each amino acid using the maximum
likelihood estimateFt(i)

jFtj
.

In practice, we usually only have access to a small
set of observed counts. The goal of the probabil-
ity estimation method is to obtain estimates over the
entire column using only the small set of observed

counts. For a small set of observed countss, we use
the method to estimate the probabilities over amino
acidsP̂s(i). Intuitively, the better the method, the
closer the estimatêPs(i) will be to the maximum
likelihood estimate over the entire columnFt(i)

jFtj
.

A way to measure how close a method estimates
this probability is by calculating the encoding cost
or conditional entropy. The encoding cost for the
samples in a columnt for a given method with es-
timateP̂s(i) is given by:

Hs(t) = �
X
i

Ft(i)

jFtj
log2P̂s(i) : (18)

The more accurate the estimate, the lower the en-
coding cost. The minimum encoding cost is when
the method’s estimate equals the maximum likeli-
hood estimatêPs(i) = Ft(i)

jFtj
. We can measure the

performance of a method by computing how much
higher the encoding cost is above this minimum.
This amount was referred to by Karplus as theex-
cess entropy. The excess entropy is called the rela-
tive entropy or the Kullback-Leibler in information
theory [6]. LetP andQ be two distributions over�.
Then, the relative entropy between the distributions,
denotedD(QjjP ), is defined as,

D(P jjQ) =
X
i2�

Q(i) log

 
Q(i)

P (i)

!
:

In out settingQ(i) � Ft(i)=jFtj andP (i) � P̂s(i).
Since the focus of this section is comparison to the
different probabilistic estimators discussed in [22],
we use the notation employed by Karplus.

Karplus examines the expected value of the en-
coding cost when a sample of sizek is chosen.
We compute the entropy over all possible samples
of size k. This measures the performance of the
method afterk observations. This gives the follow-
ing entropy of a column for a given sample size:

Hk(t) =
X

samples;jsj=k

P (sjt)Hs(t) ; (19)

whereP (sjt) is the probability of selecting sam-
ple s from columnt. By averaging over the entire
database we obtain the encoding cost for a method
with a given sample size:

Hk =

P
column t jFtjHk(t)P

column t jFtj
(20)
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= �

P
column t jFtj

P
samples;jsj=k P (sjt)Hs(t)P
column t jFtj

Karplus presents an efficient method for comput-
ing the entropy given in equation (20). By compar-
ing encoding costs between two methods, we can
compare the performance of two methods.

We perform our experiments over the same data
set that was used in [22]. The data consists
of sets of observed counts of amino acids taken
from the BLOCKS database [19, 17]. The counts
are weighted using a position-specific weighting
scheme described in [20] with slight variations pre-
sented in [27]. The data set was split into disjoint
training and test subsets.

For each experiment, we compute equation (20)
for a different size of the samplek where0 � k �
5. For each sample size, we compute the excess
entropy of the methods over all possible samples
drawn from each column. We compare the perfor-
mance of the mixture of common ancestors (CA-
Mixture) versus several previously presented meth-
ods over the same data set. As baselines for com-
parison we examine twozero-offsetmethods. These
methods are pseudo-count predictors with a fixed
initial count for each symbol. We compute the re-
sults for a zero-offset method with initial count1
(zero-1) and with a initial count optimized for the
dataset:0481 (zero-0.0481). We also compute the
results of a pseudo-count predictor (pseudo) with
initial counts optimized for the data set and two
Dirichlet mixtures. The first Dirichlet mixtures
components were obtained from [27] (Dirichlet-
S) and the second set of components (Dirichlet-K)
were obtained from [22]. All of the methods opti-
mized with a parameter search for the dataset as de-
scribed in [22]. This gives the mixture of common
ancestors a significant disadvantage because we did
not perform a parameter search for the dataset.

The results of these experiments are given in Ta-
ble 1. As we can see, the mixture of common an-
cestors performs better than all of the comparison
methods except for the Dirichlet mixtures which
were optimized for the data. However, the method
presented in this paper required very little optimiza-
tion in order to achieve these results. Also note
that the mixture of common ancestors out performs
Dirichlet-Sfor small samples. A more complete set
of experimental results as well as the mutation ma-
trix and parameter definition files are available at
http://www.cs.columbia.edu/compbio/mca/ .

Sample CA-Mixture Zero-1 Zero-0.0481 Pseudo Dirichlet-S Dirichlet-K
Size

0 0.00633 0.12527 0.12527 0.00610 0.06123 0.00883
1 0.02241 1.07961 0.20482 0.13925 0.05336 0.00115
2 0.05557 1.17080 0.18636 0.13720 0.02402 0.00757
3 0.09525 1.16489 0.16843 0.13097 0.01970 0.01471
4 0.10887 1.13144 0.15311 0.12350 0.02083 0.02740
5 0.11337 1.09164 0.14203 0.11804 0.02455 0.03943

Table 1: Excess entropy for different probability estima-
tion methods under different sample sizes over BLOCKS
database. The encoding costs were computed over the
BLOCKS database for CA-Mixture, Zero-1, Zero-0.0481, and
Pseudo and were consistent with previously published results.
The encoding costs for Dirichlet-S and Dirichlet-K reported
are published results [22]. Note that the Dirichlet mixtures
were obtained with a parameter search in order to minimize
entropy over the dataset, while the mixture of common ances-
tors results are without parameter optimization.

8 Experiments with protein
families

As we have shown, the method presented is compa-
rable in performance to other probability estimation
methods over amino acids. However, the main ad-
vantage to the mixture of common ancestors is that
it can handle large alphabets. We apply the mixture
of common ancestors presented in this paper to the
estimation of probabilities over protein families.

In the current version of the Pfam database, there
are approximately 2,500 protein families [28]. A
Dirichlet mixture over this alphabet would contain
many parameters making it difficult to optimize the
parameters over the data. If we assume that with a
2,500 symbol alphabet, there are 100 components,
this corresponds to 250,000 parameters. The mix-
ture of common ancestors, however, does not re-
quire this kind of training because the necessary pa-
rameters can easily be computed directly from the
data.

Assuming that we have many sets of observed
counts of� we can derive a matrix and prior weights
from the data. To derive a mutation matrix we use
the method presented in [18] to derive a substitu-
tion matrix and then convert it to a mutation matrix
using the method presented in Sec. 3. We can set
the prior component weightsw1

i to the background
probabilities computed over the data.

We apply the mixture of common ancestors to
estimating distributions over protein families. We
are interested in estimating probability distributions
from short subsequences of amino acids that are
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contained in the protein family and using these dis-
tributions for protein classification [3, 1]. Probabil-
ity distributions over protein families conditional on
these short subsequences are used for protein fam-
ily classification using sparse Markov transducers
(SMTs) [10]. Because SMTs are beyond the scope
of this paper, we present a very simple model for
protein family classification using subsequences and
show how the method in this paper significantly im-
proves the accuracy of protein classification.

In this classification model, we view a protein se-
quence as a set of the subsequences of amino acids
that it contains. These subsequences are obtained
by a sliding window. For these experiments, we use
subsequences of fixed size6. For each subsequence,
we compute a probability distribution over protein
families. This probability corresponds to how likely
the subsequence is to have originated from that
family. These probabilities are computed from a
database of classified protein sequences. A protein
is classified into a family by computing the proba-
bility distribution over protein families for each sub-
sequences. For each family, we compute a score for
a protein by computing the normalized sum of logs
of the probabilities of the subsequences in the pro-
tein originating from that family. This corresponds
to assuming that the subsequences are conditionally
independent. The protein is classified by determin-
ing which family has the highest score.

The key to classifying proteins under this model
is the estimation of the probability distribution over
protein families for each subsequence. We estimate
the probabilities from the observed counts of the
subsequence in the database. We compare the mix-
ture of common ancestors to a simple pseudo-count.
As we discussed earlier, because of the large alpha-
bet size, it is difficult to use Dirichlet mixtures on
this data.

To create the mixture of common ancestors, we
first create a data set from the Pfam database version
5.5. In this database, there are a total of2478 protein
families. Our data set is created by obtaining all se-
quences of length6 present in the database. For each
sequence we obtain counts of how many proteins in
each family contain that sequence. This gives us sets
of counts of over protein families. There are a total
of 13; 252; 465 distinct sequences of length6 amino
acids giving a total of13; 252; 465 sets of counts.
Using this data we create a mutation matrix and set
the prior weights as described above. The mutation

Family Mixture of Pseudo-counts
Common Ancestors

14-3-3 .54 .43
2-HacidDH .90 .82
2-oxoaciddh .89 .89
3 5 exonuclease .64 .34
3A .67 .68
3BetaHSD .73 .54
3HCDH .94 .56
4A glucanotrans .76 .56
4HPPDC .65 .54
5-FTHF cyc-lig .76 .65

Table 2:ROC50 scores showing results of protein classifica-
tion over the Pfam database using mixture of common ances-
tors and pseudo-count predictors.

matrix is of size2478� 2478.
We split each family in the Pfam database into a

training and testing portion by a ratio of4 : 1. There
are a total of228; 984 protein sequences in the train-
ing set and56; 029 sequences in the testing set. Over
the training portion, we compute the probabilities
over protein families associated with each sequence
of 6 amino acids obtained by a sliding window over
the proteins. Using these estimates we classify a
protein from the test set as follows. For each protein
we extract the length6 amino acids from the pro-
tein using a sliding window. For each protein fam-
ily, we compute a score which is the length normal-
ized product of the probabilities of the subsequences
predicting that family. We classify a protein into
the family with the highest score. For comparison,
we estimate the probabilities using both the mixture
of common ancestors and the pseudo-count method
with a virtual count of 1

2;478
.

To evaluate the protein classification we compute
the ROC50 score [13]. The ROC50 score compute
the normalized area under the curve that plots true
positives versus false positives up to 50 false pos-
itives. Table 2 compares the ROC50 scores for the
first 10 protein families in the Pfam database using
the two methods. The results for the complete Pfam
database as well as the protein family mutation ma-
trix and parameter definition files are available at
http://www.cs.columbia.edu/compbio/mca/ .

9 Discussion
We have presented the mixture of common ances-
tors and applied it to estimating amino acid prob-
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abilities and protein family probabilities from ob-
served counts. The method is effective for large al-
phabets. The mixture of common ancestors lever-
ages well-understood techniques for estimating sub-
stitution matrices from data [18, 25]. Using a variant
of these matrices,mutation matrices, the method ex-
plicitly encodes the relationships between the sym-
bols of the alphabet.

The mixture of common ancestors has several ad-
vantages over previous methods. Unlike previous
substitution matrix-based methods, the mixture of
common ancestors has a Bayesian interpretation.
The method also performs well with both few and
many observations. Unlike Dirichlet mixtures, the
mixture of common ancestors parameters can be
easily computed from training data. This give the
advantage of being able to handle large alphabets
such as protein families.

In addition, the method is strongly biologically
motivated. The method builds on the model pre-
sented by Gribskov and Veretnik which can be de-
scribed in our context. [14]. The Gribskov and
Veretnik model used a common ancestor model with
a notion of evolutionary distance. They first com-
puted which of a set of matrices fit the observed
counts best using cross entropy which in our frame-
work, is equivalent to choosing an evolutionary dis-
tance. Once they choose a matrix, they apply a mix-
ture over the common ancestor (rows) of the matrix.
Our method has three advantages. The first is that
our model is richer because the evolutionary dis-
tance is continuous versus one of 12 choices spec-
ified by the choice of matrices. Second, we have a
rich set of priors that can be used to incorporate bi-
ological information into the predictor. Finally, we
have an efficient analytical solution to the predic-
tion over all possible evolutionary distances versus
the expensive computation in their method.

Future work involves investigating what kinds of
mutation matrices and which prior weights lead to
optimal performance under different alphabets. One
direction of future work is to compute mutation
matrices directly from the data optimized for this
model as opposed to computing them from known
substitution matrices.
Appendices
A Computing the prediction of

a single ancestor model
In this section we describe the derivation of an effi-
cient procedure for computing the prediction of the

mixture over mutation rate for a common ancestor
c. We first discuss the case of a finite set of muta-
tion rates and then derive a closed form at the limit
of infinite rates. The second part of our analysis is
uses a specific form of the Dirichlet distribution (see
for instance [7]) and can be skipped if the reader is
familiar with Bayesian inference using a conjugate
family of distributions.

Given a common ancestorc, we wish to estimate
a probability distribution over amino acids using the
the set of observed countsnti. We do not know the
mutation probability�c for the component. We thus
would use the observed number of mutations and
non-mutations to help determine what the mutation
rate it and build a mixture of the possible mutation
rates as discuss in Sec. 2. LetR(c) be a finite set of
possible mutation rates forc. We first assume that
R(c) is composed of evenly spaced rates in(0; 1).
Formally, let jR(c)j = n thenR(c) = fi=nj1 �
i � n � 1g. Each� 2 R(c) constitute a compo-
nent in the mixture. The weight of a� after t ob-
servations (x1; : : : ; xt) is denoted bywt

�. Its initial
weight,w1

�, is set to a predefined value and is called
a prior weight.

Each possible rate� 2 R(c) induces a probabil-
ity distribution over� as given by Eqs. (3) and (4).
To remind the reader, after each observationxt, the
weight is updated according to the component’s pre-
diction, namelywt+1

� = wt
�P�;c(x

t). Unraveling
this recursive weight update we get that the weight
of the component corresponding to� after t obser-
vations is

wt+1
� = w1

�

tY
s=1

P�;c(x
s)

= w1
� (1� �)n

t
c

Y
j 6=c

(�Mc;j)
ntj (21)

The prediction of the entire mixture is obtained by
computing weighted average of the predictions nor-
malized by the total sum of the weights,

Pc(x
t+1) =

P
�2R(c)

w
t+1
� P�;c(xt+1)P

�2R(c)
w
t+1
�

=

P
�2R(c)

w1
�(1��)

ntc
Q

j 6=c
(�Mc;j)

nt
j P�;c(xt+1)P

�2R(c)
w1
�(1��)

ntc
Q

j 6=c
(�Mc;j)

nt
j

:(22)

Using the definition of~ntj we rewritePc(xt+1) as
follows,

Pc(x
t+1) =
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=

�Q
j 6=c

M
nt
j

c;j

� P
�2R(c)

(1��)n
t
c �

P
j 6=c

nt
j P�;c(xt+1) w1

��Q
j 6=c

M
nt
j

c;j

� P
�2R(c)

(1��)n
t
c �

P
j 6=c

nt
j w1

�

=

P
�2R(c)

(1��)n
t
c �~ntc P�;c(xt+1) w1

�P
�2R(c)

(1��)n
t
c �~ntc w1

�

: (23)

Equ. (23) can be computed efficiently ifjR(c)j is
finite and relatively small. If we would like to work
with continuously many values for� we replace the
summations with the integrals and the prior weights
w1
� with aprior distribution�(�) and get,

Pc(x
t+1) =

R 1
0 P�;c(x

t+1) (1� �)n
t
c �~ntc �(�) d�R 1

0
(1� �)n

t
c �~ntc �(�) d�

:(24)

We now need to consider two cases depending
whetherxt+1 6= c or xt+1 = c. In the first case
we get

xt+1 6= c : Pc(x
t+1) =

R
1

0
�M

c;xt+1 (1��)n
t
c �~n

t
c �(�) d�R 1

0
(1��)n

t
c �~n

t
c �(�) d�

=

R
1

0
M

c;xt+1 (1��)n
t
c �~n

t
c+1 �(�) d�R 1

0
(1��)n

t
c �~n

t
c �(�) d�

;(25)

and in the second case we get

xt+1 = c : Pc(x
t+1) =

R 1

0
(1��) (1��)n

t
c �~n

t
c �(�) d�R 1

0
(1��)n

t
c �~n

t
c �(�) d�

=

R 1

0
(1��)n

t
c+1 �~n

t
c �(�) d�R

1

0
(1��)n

t
c �~n

t
c �(�) d�

: (26)

To further simplify Eqs. (25) and (26) we need to
choose a specific density function for�(�). Let us
first analyze a simple case where�(�) is the uni-
form distribution over[0; 1]. We use the identity,

Z 1

0
xm(1� x)ndx =

m!n!

(m+ n+ 1)!
: (27)

Note also that from definition we get that~ntc + ntc =
t. Then, Eqs. (25) and (26) simplify to,

xt+1 6= c : Pc(x
t+1) = Mc;xt+1

ntc! (~n
t
c+1)!

(ntc+~ntc+1+1)!

(ntc+~ntc+1)!

ntc! ~n
t
c!

= Mc;xt+1
~ntc+1

ntc+~ntc+2

= Mc;xt+1
~ntc+1

t+2
; (28)

xt+1 = c : Pc(x
t+1) =

(ntc+1)! ~ntc!

(ntc+~ntc+1+1)!

(ntc+~ntc+1)!

ntc! ~n
t
c!

=
ntc+1

ntc+~ntc+2

=
ntc+1

t+2
: (29)

In the general case where�(�) is not the uniform
distribution, we can still compute efficiently the in-
tegrals over� analytically in some cases. One par-
ticularly convenient prior distribution for� is the
Dirichlet distribution [7], which also has good for-
mal properties. In our setting the specific Dirichlet
distribution employs two hyper-parameters which
we denote bymc and ~mc and the form of�(�) be-
comes,

�(�) / (1� �)mc� ~mc :

These hyper-parameters can viewed as an additional
set of pseudo-counts which biases the mixture’s pre-
diction. The larger these pseudo-counts are the more
we rely on the prior knowledge. Ifmc and ~mc are
integers, then Eqs. (25) and (26) now become,

xt+1 6= c : Pc(x
t+1) =

R
1

0
M
c;xt+1

(1��)mc+n
t
c � ~mc+~ntc+1 d�R

1

0
(1��)mc+n

t
c � ~mc+~ntc d�

(30)

xt+1 = c : Pc(x
t+1) =

R 1

0
(1��)mc+n

t
c+1 � ~mc+~ntc d�R

1

0
(1��)mc+n

t
c � ~mc+~ntc d�

: (31)

and using Equ. (27) again, we get

x
t+1 6= c : Pc(x

t+1) = Mc;xt+1
~mc+~ntc+1

~mc+mc+t+2 (32)

x
t+1 = c : Pc(x

t+1) = mc+ntc+1
~mc+mc+t+2 (33)

In the more general case when the pseudo-counts
are real-valued we need replace the factorial func-
tion with the Gamma function. Nonetheless, the fi-
nal form of prediction is remains the same and it is
still given by Eqs. (32) and (33). We omit the details
of the derivation since it is a straightforward gener-
alization of the derivation above using the properties
of the Gamma function which are described in [7].

B Batch computation of the
mixture weights

The mixture weight for a given common ancestorc
is

wt+1
c = w1

c

tY
i=1

Pc(x
i) ; (34)

with Pc(x
i) defined in Eqs. (32) and (33). We want

to show that

wt+1
c = w1

c

(mc + ntc + 1)! ( ~mc + ~ntc + 2)! (mc + ~mc + 2)!

(mc + ~mc + t+ 2)! (mc + 1)! ( ~mc + 1)!

Y
l 6=c

M
nt
l

c;l
:

(35)
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Since the weightwt+1
c is a product of the predic-

tions, it is invariant to the ordering of the observa-
tions. We thus can reorder the observations as fol-
lows. Letx1; :::; xn

t
c be all of the observations of the

non-mutations (i.e., for1 � s � ntc; x
i = c) and let

xn
t
c+1; :::; xt be the remaining observations. We can

also factor out theMc;i terms. In this ordering the
mixture weight is then

wt+1
c = w1

c

ntcY
i=1

mc + i+ 1

mc + ~mc + i+ 2

tY
j=ntc+1

~mc + j � ntc + 1

mc + ~mc + j + 2

Y
6=c

M
nt
l

c;l

= w1
c

(mc + ntc + 1)!( ~mc +
P

k
nt
k
� ntc + 1)!( ~mc +mc + 2)!

(mc + 1)!( ~mc + 1)!(mc + ~mc +
P

k
nt
k
+ 2)!

Y
l6=c

M
nt
l

c;l

= w1
c

(mc + ntc + 1)!

(mc + 1)!

( ~mc + ~ntc + 1)!

( ~mc + 1)!

( ~mc +mc + 2)!

(mc + ~mc + t+ 2)!

Y
l6=c

M
nt
l

c;l
:

which is Equ. (35). Similar derivation is used
with the Gamma function whenmc and ~mc are real-
valued.
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