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Abstract

We introduce a class of string kernels, called mismatch kernels, for use
with support vector machines (SVMs) in a discriminative approach to
the protein classification problem. These kernels measure sequence sim-
ilarity based on shared occurrences of k-length subsequences, counted
with up to m mismatches, and do not rely on any generative model for
the positive training sequences. We compute the kernels efficiently using
a mismatch tree data structure and report experiments on a benchmark
SCOP dataset, where we show that the mismatch kernel used with an
SVM classifier performs as well as the Fisher kernel, the most success-
ful method for remote homology detection, while achieving considerable
computational savings.

1 Introduction

A fundamental problem in computational biology is the classification of proteins into func-
tional and structural classes based on homology (evolutionary similarity) of protein se-
quence data. Known methods for protein classification and homology detection include
pairwise sequence alignment [1, 2, 3], profiles for protein families [4], consensus patterns
using motifs [5, 6] and profile hidden Markov models [7, 8, 9]. We are most interested
in discriminative methods, where protein sequences are seen as a set of labeled examples
— positive if they are in the protein family or superfamily and negative otherwise — and
we train a classifier to distinguish between the two classes. We focus on the more difficult
problem of remote homology detection, where we want our classifier to detect (as positives)
test sequences that are only remotely related to the positive training sequences.

One of the most successful discriminative techniques for protein classification – and the
best performing method for remote homology detection – is the Fisher-SVM [10, 11] ap-
proach of Jaakkola et al. In this method, one first builds a profile hidden Markov model

∗Formerly William Noble Grundy: see http://www.cs.columbia.edu/˜noble/name-change.html



(HMM) for the positive training sequences, defining a log likelihood function log P (x|θ)
for any protein sequence x. If θo is the maximum likelihood estimate for the model param-
eters, then the gradient vector ∇θ log P (x|θ)

∣

∣

θ=θo
assigns to each (positive or negative)

training sequence x an explicit vector of features called Fisher scores. This feature map-
ping defines a kernel function, called the Fisher kernel, that can then be used to train a
support vector machine (SVM) [12, 13] classifier. One of the strengths of the Fisher-SVM
approach is that it combines the rich biological information encoded in a hidden Markov
model with the discriminative power of the SVM algorithm. However, one generally needs
a lot of data or sophisticated priors to train the hidden Markov model, and because calcu-
lating the Fisher scores requires dynamic programming (a quadratic algorithm), in practice
it is very expensive to compute the kernel matrix.

In this paper, we present a new string kernel, called the mismatch kernel, for use with an
SVM for remote homology detection. The (k,m)-mismatch kernel is based on a feature
map to a vector space indexed by all possible subsequences of amino acids of a fixed
length k; each instance of a fixed k-length subsequence in an input sequence contributes
to all feature coordinates differing from it by at most m mismatches. Thus, the mismatch
kernel adds the biologically important idea of mismatching to the computationally simpler
spectrum kernel presented in [14]. In the current work, we also describe how to compute
the new kernel efficiently using a mismatch tree data structure; for values of (k,m) useful
in this application, the kernel is fast enough to use on real datasets and is considerably
less expensive than the Fisher kernel. We report results from a benchmark dataset on the
SCOP database [15] assembled by Jaakkola et al. [10] and show that the mismatch kernel
used with an SVM classifier achieves performance equal to the Fisher-SVM method while
outperforming all other methods tested. Finally, we note that the mismatch kernel does
not depend on any generative model and could potentially be used in other sequence-based
classification problems.

2 Spectrum and Mismatch String Kernels

The basis for our approach to protein classification is to represent protein sequences as
vectors in a high-dimensional feature space via a string-based feature map. We then train
a support vector machine (SVM), a large-margin linear classifier, on the feature vectors
representing our training sequences. Since SVMs are a kernel-based learning algorithm,
we do not calculate the feature vectors explicitly but instead compute their pairwise inner
products using a mismatch string kernel, which we define in this section.

2.1 Feature Maps for Strings

The (k,m)-mismatch kernel is based on a feature map from the space of all finite sequences
from an alphabet A of size |A| = l to the lk-dimensional vector space indexed by the set
of k-length subsequences (“k-mers”) from A. (For protein sequences, A is the alphabet of
amino acids, l = 20.) For a fixed k-mer α = a1a2 . . . ak, with each ai a character in A,
the (k,m)-neighborhood generated by α is the set of all k-length sequences β from A that
differ from α by at most m mismatches. We denote this set by N(k,m)(α).

We define our feature map Φ(k,m) as follows: if α is a k-mer, then

Φ(k,m)(α) = (φβ(α))β∈Ak (1)

where φβ(α) = 1 if β belongs to N(k,m)(α), and φβ(α) = 0 otherwise. Thus, a k-mer
contributes weight to all the coordinates in its mismatch neighborhood.

For a sequence x of any length, we extend the map additively by summing the feature



vectors for all the k-mers in x :

Φ(k,m)(x ) =
∑

k-mers α in x

Φ(k,m)(α)

Note that the β-coordinate of Φ(k,m)(x ) is just a count of all instances of the k-mer β

occurring with up to m mismatches in x . The (k,m)-mismatch kernel K(k,m) is the inner
product in feature space of feature vectors:

K(k,m)(x , y) = 〈Φ(k,m)(x ),Φ(k,m)(y)〉.

For m = 0, we retrieve the k-spectrum kernel defined in [14].

2.2 Fisher Scores and the Spectrum Kernel

While we define the spectrum and mismatch feature maps without any reference to a gen-
erative model for the positive class of sequences, there is some similarity between the
k-spectrum feature map and the Fisher scores associated to an order k − 1 Markov chain
model. More precisely, suppose the generative model for the positive training sequences is
given by

P (x |θ) = P (x1 . . . xk−1|θ)P (xk|x1 . . . xk−1, θ) . . . P (xn|xn−k+1 . . . xn−1, θ)

for a string x = x1x2 . . . xn, with parameters

P (xj = t|xj−k+1 . . . xj−1 = s1 . . . sk−1, θ) = θt|s1...sk−1

for characters t, s1, . . . , sk−1 in alphabet A. Denote by θo the maximum likelihood es-
timate for θ on the positive training set. To calculate the Fisher scores for this model,

we follow [10] and define independent variables θt,s1...sk−1 = θ
t|s1...sk−1

∑

t′ θ
t′|s1...sk−1

satisfying

θ
t,s1...sk−1
o = θ

t|s1...sk−1
o ,

∑

t′ θ
t′,s1...sk−1
o = 1. Then the Fisher scores are given by

∂

∂θt,s1...sk−1
log P (x |θ)

∣

∣

∣

∣

θ=θo

= nt|s1...sk−1

(

1 − θ
t,s1...sk−1
o

θ
t,s1...sk−1
o

)

−
∑

t̃6=t

nt̃|s1...sk−1

=
nt|s1...sk−1

θ
t|s1...sk−1
o

− ns1...sk−1
,

where nt|s1...sk−1
is the number of instances of the k-mer s1 . . . sk−1t in x , and ns1...sk−1

is the number of instances of the (k−1)-mer s1 . . . sk−1. Thus the Fisher score captures the
degree to which the k-mer s1 . . . sk−1t is over- or under-represented relative to the positive
model. For the k-spectrum kernel, the corresponding feature coordinate looks similar but
simply uses the unweighted count: φs1...sk−1t(x ) = nt|s1...sk−1

.

3 Efficient Computation of the Mismatch Kernel

Unlike the Fisher vectors used in [10], our feature vectors are sparse vectors in a very high
dimensional feature space. Thus, instead of calculating and storing the feature vectors, we
directly and efficiently compute the kernel matrix for use with an SVM classifier.

3.1 Mismatch Tree Data Structure

We use a mismatch tree data structure (similar to a trie or suffix tree [16, 17]) to represent
the feature space (the set of all k-mers) and perform a lexical traversal of all k-mers oc-
curring in the sample dataset match with up to m of mismatches; the entire kernel matrix



K(xi, xj), i, j = 1 . . . n for the sample of n sequences is computed in one traversal of the
tree.

A (k,m)-mismatch tree is a rooted tree of depth k where each internal node has |A| = l
branches and each branch is labeled with a symbol from A. A leaf node represents a fixed
k-mer in our feature space – obtained by concatenating the branch symbols along the path
from root to leaf – and an internal node represents the prefix for those k-mer features which
are its descendants in the tree. We use a depth-first search of this tree to store, at each node
that we visit, a set of pointers to all instances of the current prefix pattern that occur with
mismatches in the sample data. Thus at each node of depth d, we maintain pointers to
all substrings from the sample data set whose d-length prefixes are within m mismatches
from the d-length prefix represented by the path down from the root. Note that the set of
valid substrings at a node is a subset of the set of valid substrings of its parent. When we
encounter a node with an empty list of pointers (no valid occurrences of the current prefix),
we do not need to search below it in the tree. When we reach a leaf node, we update all
entries of the kernel matrix with the contribution of the corresponding k-mer feature by
examining the valid string instances in a pairwise fashion: for each pair of instances α and
β at the leaf node, we update the matrix entry K(xa, xb), where the sample sequence xa is
the source of α and xb is the source of β.
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Figure 1: An (8, 1)-mismatch tree for a sequence AVLALKAVLL used for computing the kernel
matrix with k-mers of length 8 allowing 1 mismatch, showing valid instances at each node down a
path: (a) at the root node; (b) after expanding the path A; and (c) after expanding the path AL. The
number of mismatches for each instance at each node is also indicated.

3.2 Efficiency of the Kernel Computation

First note that since we compute the kernel in one depth-first traversal, we do not actually
need to store the entire mismatch tree but instead compute the kernel using a recursive
function, which makes more efficient use of memory and allows kernel computations for
large datasets.

The number of k-mers within m mismatches of any given fixed k-mer is n(k,m, l) =
∑m

i=0

(

k
i

)

(l − 1)i = O(kmlm). Thus the effective number of k-mer instances that

we need to traverse grows as O(Nkmlm), where N is the total length of the sample
data. It is not hard to see that for the kernel computation, the worst case occurs when
all k-mer instances in the data are the same, resulting in worst case running time of
O(n(k,m, l)N2) = O(kmlmN2). (We will present more details of the complexity analy-
sis elsewhere.) However, for the application we discuss in this paper, small values of m are
most useful, and the kernel calculations are quite inexpensive.
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Figure 2: Comparison of four homology detection methods. The graph plots the total number of
families for which a given method exceeds an ROC score threshold. Each series corresponds to one
of the homology detection methods described in the text.

4 Experiments: Remote Protein Homology Detection

We test the mismatch kernel with an SVM classifier on the SCOP [15] (version 1.37)
datasets designed by Jaakkola et al. [10] for the remote homology detection problem. In
these experiments, remote homology is simulated by holding out all members of a target
SCOP family from a given superfamily. Positive training examples are chosen from the
remaining families in the same superfamily, and negative test and training examples are
chosen from outside the target family’s fold. The held-out family members serve as posi-
tive test examples. In order to train HMMs, Jaakkola et al. used the SAM-T98 algorithm
to pull in domain homologs from the non-redundant protein database and added these se-
quences as positive examples in the experiments. Details of the datasets are available at
www.soe.ucsc.edu/research/compbio/discriminative.

Because the test sets are designed for remote homology detection, we use small val-
ues of k. We tested (k,m) = (5, 1) and (6, 1), where we normalized the kernel via

KNorm
(k,m)(x , y) =

K(k,m)(x , y)
√

K(k,m)(x , x )
√

K(k,m)(y , y)
. We found that (k,m) = (5, 1) gave

slightly better performance, though results were similar for the two choices. (Data
for (k,m) = (6, 1) not shown.) We use a publicly available SVM implementation
(www.cs.columbia.edu/compbio/svm) of the soft margin optimization algorithm described
in [10].

For comparison, we include results from three other methods. These include the origi-
nal experimental results from Jaakkola et al. for two methods: the SAM-T98 iterative
HMM, and the Fisher-SVM method. We also test PSI-BLAST [3], an alignment-based
method widely used in the biological community, on the same data using the methodology
described in [14].

Figure 2 illustrates the mismatch-SVM method’s performance relative to three existing
homology detection methods as measured by ROC scores. The figure includes results for
all 33 SCOP families, and each series corresponds to one homology detection method.
Qualitatively, the curves for Fisher-SVM and mismatch-SVM are quite similar. When
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Figure 3: Family-by-family comparison of (5, 1)-mismatch-SVM with Fisher-SVM. The coor-
dinates of each point in the plot are the ROC scores (plot (A)) or ROC-50 scores (plot (B)) for one
SCOP family, obtained using the mismatch-SVM with k = 5, m = 1 (x-axis) and Fisher-SVM
(y-axis). The dotted line is y = x.

we compare the overall performance of two methods using a two-tailed signed rank test
[18, 19] based on ROC scores over the 33 families with a p-value threshold of 0.05 and
including a Bonferroni adjustment to account for multiple comparisons, we find only the
following significant differences: Fisher-SVM and mismatch-SVM perform better than
SAM-T98 (with p-values 1.3e-02 and 2.7e-02, respectively); and these three methods all
perform significantly better than PSI-BLAST in this experiment.

Figure 3 shows a family-by-family comparison of performance of the (5, 1)-mismatch-
SVM and Fisher-SVM using ROC scores in plot (A) and ROC-50 scores in plot (B). 1 In
both plots, the points fall approximately evenly above and below the diagonal, indicating
little difference in performance between the two methods.

Figure 4 shows the improvement provided by including mismatches in the SVM kernel.
The figures plot ROC scores (plot (A)) and ROC-50 scores (plot (B)) for two string kernel
SVM methods: using k = 5, m = 1 mismatch kernel, and using k = 3 (no mismatch)
spectrum kernel, the best-performing choice with m = 0. Almost all of the families per-
form better with mismatching than without, showing that mismatching gives significantly
better generalization performance.

5 Discussion

We have presented a class of string kernels that measure sequence similarity without re-
quiring alignment or depending upon a generative model, and we have given an efficient
method for computing these kernels. For the remote homology detection problem, our dis-
criminative approach — combining support vector machines with the mismatch kernel —
performs as well in the SCOP experiments as the most successful known method.

A practical protein classification system would involve fast multi-class prediction – poten-
tially involving thousands of binary classifiers – on massive test sets. In such applications,
computational efficiency of the kernel function becomes an important issue. Chris Watkins
[20] and David Haussler [21] have recently defined a set of kernel functions over strings,

1The ROC-50 score is the area under the graph of the number of true positives as a function of
false positives, up to the first 50 false positives, scaled so that both axes range from 0 to 1. This
score is sometimes preferred in the computational biology community, motivated by the idea that a
biologist might be willing to sift through about 50 false positives.
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Figure 4: Family-by-family comparison of (5, 1)-mismatch-SVM with spectrum-SVM. The co-
ordinates of each point in the plot are the ROC scores (plot (A)) or ROC-50 scores (plot (B)) for one
SCOP family, obtained using the mismatch-SVM with k = 5, m = 1 (x-axis) and spectrum-SVM
with k = 3 (y-axis). The dotted line is y = x.

and one of these string kernels has been implemented for a text classification problem [22].
However, the cost of computing each kernel entry is O(n2) in the length of the input se-
quences. Similarly, the Fisher kernel of Jaakkola et al. requires quadratic-time computation
for each Fisher vector calculated. The (k,m)-mismatch kernel is relatively inexpensive to
compute for values of m that are practical in applications, allows computation of multi-
ple kernel values in one pass, and significantly improves performance over the previously
presented (mismatch-free) spectrum kernel.

Many family-based remote homogy detection algorithms incorporate a method for select-
ing probable domain homologs from unannotated protein sequence databases for additional
training data. In these experiments, we used the domain homologs that were identified by
SAM-T98 (an iterative HMM-based algorithm) as part of the Fisher-SVM method and in-
cluded in the datasets; these homologs may be more useful to the Fisher kernel than to the
mismatch kernel. We plan to extend our method by investigating semi-supervised tech-
niques for selecting unannotated sequences for use with the mismatch-SVM.

Many interesting variations on the mismatch kernel can be explored using the framework
presented here. For example, explicit k-mer feature selection can be implemented dur-
ing calculation of the kernel matrix, based on a criterion enforced at each leaf or internal
node. Potentially, a good feature selection criterion could improve performance in certain
applications while decreasing kernel computation time. In biological applications, it is also
natural to consider weighting each k-mer instance contribution to a feature coordinate by
evolutionary substitution probabilities. One could also adjust the k-mer coordinate maps
as suggested by the Fisher scores described in Section 2.2. Finally, one could use linear
combinations of kernels K(ki,mi) to capture similarity of different length k-mers. We be-
lieve that further experimentation with mismatch string kernels could be fruitful for remote
protein homology detection and other biological sequence classification problems.
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