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ABSTRACT

Motivation: Sequence similarity often suggests evolutionary relation-
ships between protein sequences that can be important for inferring
similarity of structure or function. The most widely-used pairwise
sequence comparison algorithms for homology detection, such as
BLAST and PSI-BLAST, often fail to detect less conserved remotely-
related targets.

Results: In this paper, we propose a new general graph-based
propagation algorithm called MotifProp to detect more subtle simil-
arity relationships than pairwise comparison methods. MotifProp is
based on a protein-motif network, in which edges connect proteins
and the k-mer based motif features that they contain. We show that
our new motif-based propagation algorithm can improve the ranking
results over a base algorithm, such as PSI-BLAST, that is used to ini-
tialize the ranking. Despite the complex structure of the protein-motif
network, MotifProp can be easily interpreted using the top-ranked
motifs and motif-rich regions induced by the propagation, both of which
are helpful for discovering conserved structural components in remote
homologies.

Availability: http://www.cs.columbia.edu/compbio/motifprop
Contact: cleslie@cs.columbia.edu

1 INTRODUCTION

In this paper, we introduce a new graph-based rank propaga-
tion algorithm called MotifProp, where we represent relationships
between proteins and motif-based features in a protein-motif net-
work. Instead of relying on a direct measure of pairwise sequence
similarity, we assume that most distantly-related proteins share a
conserved structure or at least some common conserved structural
components. A natural way of trying to capture these subtle sim-
ilarities is to measure whether the proteins share sequence motifs
that might correspond to conserved structural elements. To incorpor-
ate this notion into a network structure, we define the protein-motif
network—where similarity between protein nodes is indirectly rep-
resented by the set of edges connecting protein nodes and motif-based
feature nodes. This network is a bipartite graph, where edges connect
protein nodes and motif nodes, and a set of common motifs in the
network can serve as ‘bridges’ connecting similar proteins. To meas-
ure the similarity to a given query, each protein node and motif node
is first assigned an activation score with an initial ranking algorithm,
which is called the base algorithm. The MotifProp algorithm propag-
ates activation scores through the protein-motif network to learn
rankings relative to the query sequence. After convergence of the
algorithm, the final protein node activation scores are used to rank
the sequences and retrieve homologs of the query. An illustration of
a protein-motif network is shown in Figure 1.

The most widely-used algorithms for detecting homology in protein  For MotifProp to perform well in the ranking task, we need to
sequences have focused on estimating pairwise sequence similaritfioose an appropriate set of feature motifs that can capture the
with sequence—sequence or profile—sequence alignments (Altschetdmote homology information we are interested in. Recent super-
et al., 1990, 1997; Watermaet al., 1991). These algorithms use vized remote homology detection approaches (Kargias., 2001;
dynamic programming or faster heuristic strategies to producelaakkolaet al., 1999; Liao and Noble, 2002; Lesla al., 2004;
optimal or nearly optimal pairwise local alignments. Moreover, theseBen-Hur and Brutlag, 2003; Kuang al., 2005) have used many
algorithms exploit a well-established methodology for estimating ardifferent representations of protein sequences, including string ker-
E-value to assess the statistical significance of the alignment scomgels based on short inexact-matchirgner features. Among these
between the query and target sequences. However, for remotehgcent methods, SVM classification using the profile kernel (Kuang
related protein sequences, even profile-based ranking algorithme al., 2005)—ak-mer based string kernel defined on profiles—is
like PSI-BLAST will fail to detect sequence similarity due to the one of the most successful methods for remote homolog detection.
weak statistical significance of the computed alignments. Interestin the profile kernel, each sequence is associated with a sequence
ingly, probably because of the lack of a comprehensive enouglprofile (derived, for example, from PSI-BLAST) and eackength
protein motif database, very few of these previous works make use afindow of the profile is implicitly mapped to a vector in the fea-
motifs to rank proteins. If we simply consider the common moitif hits ture space indexed by dlHlength subsequences from the alphabet
between proteins as the similarity measure, existing motif databasesf amino acids; the non-zero features in this vector correspond to

such as PROSITE database (Hetal., 2004) and eMOTIF data-

k-mers similar to the profile. In this paper, we useners as motifs

base (Nevill-Manningtal., 1998), are more useful for characterizing in the protein-motif network, and we define a sekeaher features

homologous proteins than for inferring remote homologies.

*To whom correspondence should be addressed.

that are similar to windows of a protein sequence either by using
a profile (similar to the profile kernel approach) or by using fixed
substitution probabilities or exaétmer matches. In addition, we
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In addition to obtaining a ranking of proteins relative to the query,
MotifProp induces a ranking of motif features. Those top-ranked
motif features are considered important to the ranking and suggest
common conserved components among distantly-related proteins. It
is biologically interesting to analyze these selected motifs for a better
understanding of the relation between motifs and protein superfam-
} ilies. Another important property of MotifProp is that high motif
activation values suggest consensus patterns with the relatives of the
guery sequence. If we map the motif activation values back to their
original matching positions onthe query sequence, then those regions
that are important for ranking will be associated with high activation
P (Protein Vertices) scores. These high activation or ‘motif-rich’ regions are particularly
useful for motif discovery and structural study, and they can provide a
biological explanation of the performance improvement over the base
ranking algorithm, especially for queries where alignment-based
methods cannot successfully retrieve target sequences.
ng . - h .
Our paper is organized as follows. In Section 2, we describe
all the networks and their corresponding propagation algorithms.
In Section 3, we report our experiments on a benchmark data-
experiment with using eMOTIFs (Ben-Hur and Brutlag, 2003) andset of query sequences that have known structural annotations,
PROSITE motifs (Hulet al., 2004) in the network. We also explore based on the SCOP database (Muriral., 1995). We also ana-
how to integrate complementary motif sets, such as PROSITE motifyze structural and functional properties of top-ranked motifs and
andk-mers, with a sequential MotifProp algorithm to achieve moremotif-rich regions induced by MotifProp. Finally, in Section 4, we
refined ranking performance. discuss several possible future directions for our network propa-
Our earlier work introducing the RankProp algorithm (Weston gation work.
et al., 2004) showed that one can exploit the global structure of the
protein similarity network to achieve significant improvement over
PSI-BLAST for the protein ranking problem. The protein similar- 2 METHODS
ity network is a weighted graph defined on a large protein databasey this section, we introduce our new method, the MotifProp algorithm. Sev-
where protein sequences are the nodes and pairwise PSI-BLASdral natural variants of MotifProp based on different protein-motif networks
E-values are used to compute edge weights. RankProp is able t@ith motif nodes from either one or multiple motif databases are also dis-
propagate through densely connected regions of the protein similagussed. Finally, we describe how to extract motif-rich regions for protein
ity network to detect subtle sequence relationships that are missed @yperfamilies using the MotifProp-induced feature activation scores.
methods like PSI-BLAST, which only uses local similarity near the
query. Compared with MotifProp, the RankProp algorithm has two2.1 M otifProp: protein-motif bipartite network for
major drawbacks. First, it does not provide an explanation of why the rank propagation
targetis related to the query by detecting conserved sequence inforrotein-motif bipartite network has two sets of nodes, on@sepresenting
ation between them. Second, considerable pre-processing time jgotein sequences and anotherBeepresenting motifs. Edges in the graph
needed to compute the similarity network for a large database.  only connect nodes iR with nodes inF, giving a bipartite graph. Lej be
Other related work on network-based propagation algorithms hathe query sequencé] the connectivity matrix between protein vertices and
focused on information retrieval on the web (Kleinberg, 1999) andmotif vertices, and” and F' the vectors of activation values associated with
classification tasks in natural language processing (Radev, 2004tj]esetwo sets of nodes with respecj ttMotifProp uses an alternating update
Kleinberg models the hyperlinked web network as a bipartite grapHUIe' In one direction, we propagate the act_ivation values _of the protein_ nod_es
comprising two sets of nodes—hubs (web pages with many pointer the connected feat_ure_nodes through welghted edges; inthe other dlrecthn,
we propagate the activation values of the motif nodes to the connected protein

to related pages) and authorities (web pages pointed to by hUbS)Wodes through those edges. In both directions, we use a paramet@, 1)

and propaga_tes ?Ct'vat'or_‘ scores between these nodq _SetS' Ra(?t?\‘.ontrol the amount of propagation across the bipartite graph relative to

proposes a tripartite updating scheme for a number classification tagkinforcement of the initial activation values. The update rules forrthe

in text processing by defining a bipartite graph where feature verticegund of propagation are given by

are connected with labeled examples and unlabeled examples, and he

cyclically propagates activation between these three kinds of nodes.
In contrast, we formulate a propagation algorithm for learning Fl=oH P +(1—a)F°,

a ranking in a bipartite graph of proteins and motifs. MotifProp

takes the ranking scores of any base ranking algorithm, such éghereH is obtained fromH by normalizing so that entries in each row sum

. P _ . . 0
PSI-BLAST, as the initial activation values for protein nodes and® LandH"is a?".n."arly row ”Qrm.al'zed version Of. the tranSpOS@fﬁ
is the vector of initial motif activation values arkef is the vector of initial

initializes activation scores of the motif nodes estimated by maI[Ch'activation values from the base ranking algorithm, each normalized so that

ing motifs against the query. It then performs a simple two-directiongntries sum to 1.

propagation a|90ri_thm that can effi(_:iently propagate activation.V:a.I- The proof of the convergence for the MotifProp algorithm is related to
ues between protein nodes and motif nodes to improve over the initiahe proof in Zhouet al. (2004). We reformulate the MotifProp algorithm
ranking. as a propagation algorithm with protein nodes and motif nodes. In this

F (Motif Vertices)

Fig.1. Protein-motif bipartite network. Edges inthe network representoccur-
rences of a motif within a protein sequence. The edges are weighted accordi
to the significance of the motif occurrence.

Pl =oHF +1—a)P°

3712



MotifProp algorithm for protein ranking

formulation, the update rule is given by p—+1—1, and all th&k-mers with a substitution score less than a user-defined
41 ~ . o threshold are considered to be motif hits against sequentfewve do not
<P) —a (9 H) <P> +(1-0w) (P> ) have a profile for our protein sequences, then we can restrict the network
F H  0J\F F to include only edges that correspond to exact occurrenceésnadrs f in

The connectivity matrix (of siz€P| + | F| by | P| + |F|) can be divided ~ sequences (similar to thek-spectrum mapping (Leslet al., 2002)) and use
into four block submatrices, one between protein nodgs$ by |P|), one the diagonal entries of a fixed substitution matrix for scoring. (In principle,
between motif nodes| k| by |F|), one between protein nodes and motif the parameterk andx depend on the profile, but for simplicity, we use the
nodes [P| by | F|) and a final one between motif nodes and protein nodes.Same parameter values for all sequences.)
For our algorithm, the diagonal blocks are all Os, so the row-normalization ©One can also consider using motifs derived from the PROSITE database.
of H and its transpose is the same as row-normalizing the Ayli- | F| by However, PROSITE contains different types of motifs, such as regular expres-
|P| 4 |F| connectivity matrix to a stochastic matrix, and the bi-directional sions and profiles, making it hard to establish a consistent substitution scoring
update rule is identical to the single update rule given above. The originaystem. For simplicity, we consider only exact matches between motifs and
proof of convergence can therefore be directly applied to our algorithm. ~ sequences, and we estimate the substitution score using diagonal entries of

In various propagation a|g0rithms in the machine |earning |iterature’ edg@ fixed substitution matrix as described above. For the case of the eMOTIF
weights between nodes are often based on a notion of distance between nddtabase, thé&-value based on the substitution probability between amino
data examples. Typically, given a distanti¢, j) between nodesandj, the ~ acids and amino acid groups is provided by the eBAS package (Huang and
corresponding edge weight is first set to exgi, j)/o, wheres > 0 is a Brutlag, 2001) and can be used directly for estimating edge weights.
parameter, and then normalized so that the sum of weights of the (directed) The protein-motif network is much less expensive to compute than
edges terminating at any vertex is 1. In RankProp, PSI-BLASValues the protein similarity network used with the RankProp algorithm (Weston
were used as the distance function between protein nodes to compute theeal., 2004). Optimal sequence alignment requires time that is quadratic
Gaussian edge weights, and the Gaussian oftvalue distance from the  in sequence length, rendering it expensive to compute in practice. In that
query to each protein node was used to initialize the activation scores. FoFase, the time complexity for building a full protein similarity network is

lowing the same motivation, for MotifProp the initial activation value% oty Z‘jﬂl(lpi‘lpj 1)), where| p; | denotes the length of protein sequence
FO9 and (unnormalized) edge weight; are given by pi. With heuristic algorithms, such as PSI-BLAST, we can obtain a reduced
o ) complexity of approximatelO (n logn) in sequence length. However, it is
P =exp(=S4(j)/o) still often prohibitively expensive to compute the similarity network if you

FO = exp(—E, (j)/o) have a large database of proteins. On a SUN cluster with 20 host machines,
J q it takes longer than 1 month to compute a protein similarity network with
Hij = ex((—E;(j)/o), 101 602 sequences from Swiss-Prot. On the other hand, the time complexity

for building a protein-motif network iQ(Z[‘.’;'l Z_'Ql C(pi, fj)), wheref;

whereo > 0, 5,(j) is PSI-BLASTE-value assigned to protejrgiven query denotes a motif and’ is the time complexity for matching a motif against

g andE; ({') is the E-value associated with a match of tli¢h motif in the _a sequence, which is usually boundeddy p;|). Empirically, on a single
i'th_ p_rptem. .Seguences that are left urlranked by PSI-BLAST are aSSIgnet‘?1achine in the SUN cluster, it takes2 days to compute a protein-motif
an initial activation score of 0, assuming a very lafgaalue against the b oyyori with 101 602 sequences from Swiss-Prot and either 223 390 motifs

query. Various types of motifs can be used in the protein-motif network, suc rom the eMOTIF database, 1639 PROSITE motifs or all 160000 4mers
as the eMOTIF database, the PROSITE database, or the set of all possib(lgSing exact matches)

k-length sequences from the amino acid alphabet. To estifat@ues for

motif matches, we follow the methodology of ungapped alignments (Altschul . . . . .
et al., 1990), in which theE-value of an optimal match with score S is 2.2 Sequential MotifProp: integration of multiple

approximated by motif databases

E(S) = K|x|| fle S, Existing protein mot.ilf databas_(_as are _built usir?g various methods. They are
represented as position-specific scoring matrices (ldud., 2004), regu-
whereK and) are parameters depending on the substitution matrix and backtar expressions (Nevill-Manning al., 1998) ork-mers (Kuanggt al., 2005).
ground frequency of amino acids, apd and|f| are the length of protein  Ideally we expect that the superset of all motifs will produce the most compre-
x and motif f. We note that the PSI-BLASE-values, used to compute hensive protein-motif network. However, given different properties of these
initial activation scores for protein nodes, and the matialues, used to  motif sets, the expected number of motif hits and corresponBlimglues for
compute edge weights and initial activation scores for motif nodes, are no4 given query protein sequence can vary significantly across these motif sets.
directly comparable, since they gievalues for different statistical contexts. This specificity difference makes combination of motif hits into a unified
Moreover, in the latter case, tii2value formula is motivated by asymptotic  scoring schema for MotifProp a hard problem. Our empirical experiments
theory, so the dependence on the length of the motif is only a rough approxsuggest that a simple weighted linear combination of PROSITE motifs and
imation. Nevertheless, the difference between tiigsalues is notaconcern  k-mer motifs does not improve over using each individual set of motifs (res-
here, since protein nodes and motif nodes play differentroles in the MotifPropilts not shown). It is also computationally intensive to cross-validate for an
algorithm: protein and motif activation scores are normalized separately, angptimal weighting between the motif sets, considering the possible number
the algorithm induces separate rankings of proteins and motifs relative tef motif databases we could use. We propose a simple sequential MotifProp
the query. We emphasize that thevalues are used only to obtain a notion based on protein-motif networks containing multiple motif sets to resolve this
of distance between motifs and protein sequences; other reasonable choiagsecificity problem.
of distance should also work. In a protein-motif network with multiple motif sets, motif nodéscan be
If we usek-mers as feature nodes, lalimers that match exactly orinexactly  divided into ann-set partition{ 1), F2), ... Fi)}, in which F;, is a set of
to k-length subsequences of sequencare represented by edges between motifs from theith motif set. Edges only connect each suligti € [1,1])
nodex and the corresponding motif nodes in the bipartite graph. A goodand protein vertice®. The edge weights are estimated using only on the
way of computing the matches betwelemers and sequences is motivated motif model for each individuaF,. The connectivity matrice#/;,, and
by the profile-based-mer mapping (Kuangt al., 2005). In this case, the H(;, are normalized individually in the same manner as a protein-motif
substitution score betweertaner f and sequenceis max, Sy (xp..p+k—1), network comprising vertice® and F;, only. In this larger network, we run
wherep = 1..|x| —k +1andSs(xp. pri-1) = Zf s1(fi, xpi—1) iIsasum MotifProp to convergence with each set of motifsi@equential runs, using
of log odds substitution scoras(-,-) depending on the profile at position the final activation values from thith motif set to initialize the activation
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Mapping motif-
rich regions

Query Sequence

(Protein Vertices)

(Motif Vertices)

Fig. 2. Mapping motif-rich regions. After motif propagation, each motif node is associated with an activation score. We map each motif back to the query
sequence and accumulate the activation scores for each position. Those positions with high scores are classified as motif-rich regions.

values for thei + 1)st motif set. This simple sequential MotifProp algorithm additional nodes. For all rank propagation algorithms we perform
avoids the normalization issue involved in combining different motif sets, 20 iterations, which is generally sufficient for convergence, and we
while allowing a cumulative and consistent updating to the activation valuesompare against PSI-BLAST and RankProp for the protein ranking

of protein nodes”. task of retrieving target sequences from the same superfamily as the
query. Although the propagations are on sequences from both the
2.3 ldentifying motif-rich regions SCOP database and the Swiss-Prot database, we only consider the

In the MotifProp algorithm, we learn a vector of activation values for both ranking among SCOP domains, i.e. the performance is reported on
protein nodes and motif nodes. Motifs with high activation values are thosdhe ranking of SCOP domains obtained when Swiss-Prot sequences
connecting the query sequence and its homologs by strong edges. Thud(e removed from the ranked list.
their corresponding matches on the query sequence correspond to motifs We evaluate the ranking performance by using three variants of the
that are conserved during the evolution of the protein superfamily or fold.receiver operating characteristic (ROC) score (Hanley and McNeil,
To analyze these motif regions, we compute an accumulated activation valug9g2). For a given query, this score measures the area under a curve
for each position on the query sequence and mark those positions with higihat plots true positives as a function of false positives for varying
score density as regions of interest using classification thresholds. The RQ&core computes this score up to
Z F8(p, j), then-th false positive (Gribskov and Robinson, 1996). The score is
; ! normalized to fall between 0 and 1, and for this problem, the expec-
where F* is the vector of final activation values for all motif features and ted score from a random query is close to 0. For each metho.d' we
8(p, j) is a binary function denoting whether tigeth position falls inside report the mean RO, ROGo and ROG S_Cores a_cross all qu?”es
a match of thej-th feature (Fig. 2). With this mapping, a distribution of [N the test set. These three scores place increasing emphasis on pro-
activation scores can be obtained over the positions. We sort the positiof8Ucing high-quality predictions at the top of the ranked list. R@C
by their activation values and take the top-scoring positions that contributgrobably of the most interest for this application.
90% of the cumulative total score. We define these top-scoring positions to be
our_motlf-rlch regions. We expect these regions to correspond to conservegll Protein-motif rank propagation
regions among homologs of the query, so they are potentially useful for
structural or functional motif analysis. In Section 3.4, we compare motif-rich\We test the propagation algorithm on three different protein-motif
regions extracted in our experiment with PDB annotations, and we show theaetworks, one produced from the eMOTIF database (version 3.6)
corresponding functional and structural properties of motif-rich regions for(Ben-Hur and Brutlag, 2003), one from the PROSITE motif database
several superfamily examples. (version 18.34) (Hulet al., 2004) and the last produced fronka
mer feature mapping (Leslit al., 2002; Kuanggt al., 2005). We
use the eBAS package (Ben-Hur and Brutlag, 2003) to scan proteins
3 EXPERIMENTS against the eMOTIF database and the PROSCAN package (Gattiker
We test MotifProp algorithm on 7329 protein domains with known et al., 2002) for scanning against the PROSITE database. For the
3D structures in the human-annotated SCOP database version 1.59ner mapping, we sét = 4, and we use a profile feature mapping
(Murzin et al., 1995). After purging with http://astral.berkeley.edu, (Kuanget al., 2005) for SCOP sequences with a threshold of six,
no pair of proteins have-95% sequence identity. Following the but forimproved efficiency, we use an exaemer matching (Leslie
setup in Westoret al. (2004), these 7329 sequences are dividedet al., 2002) for Swiss-Prot sequences. The PSI-BLAST profiles of
into a training set (4246 sequences) and a test set (3083 sequenceSLOP sequences are produced by searching againstthe SCOP dataset
The training set is used for estimating optimal parameters for thglus Swiss-Prot sequences.
propagation algorithm. In order to propagate through a large net- By measuring the error rate on the training set queries, the para-
work, we use 101602 proteins from Swiss-Prot (version 40) asneterr = 0.85is chosen forthemer MotifProp algorithme = 0.4
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Table 1. Comparison of overall ranking quality produced by various
algorithms
3000

Algorithm ROG ROGCo ROGso 2500

g

g
Sequential MotifProp 0.640 0.663 0.688 % 2000
k-mer MotifProp 0.621 0.648 0.679 &
RankProp 0.592 0.667 0725 < 1500
PROSITE MotifProp 0.600 0.643 0.664 =
eMOTIF MotifProp 0.527 0.612 0666 2 ;00
PSI-BLAST 0.594 0.616 0.641

500 - PSI-BLAST ROC1 —+—
The table lists, for each algorithm, the mean ROROG;o and ROGy scores over 3083 k_mermr{};ﬁﬁgg ROCL %
test query sequences. 0 Sequential MotifProp ROC1 (PROSITE+k-mer) & i
0 0.2 04 06 08 1
Table 2. Pairwise comparisons of algorithms ROC1
3500
ROC type Algrotihm 1 Algorithm 2~ Win Lose Tie 3000 %
%) (%) (%)

» 2500
ROG k-mer MotifProp PSI-BLAST 25.0 2.6 72.4 S
ROGCo k-mer MotifProp PSI-BLAST 28.0 3.4 68.6 % 2000
ROGso k-mer MotifProp PSI-BLAST 324 9.9 57.8 3
ROG, Sequential MotifProp  RankProp 273 126 60.1 g 1500
ROGCyo Sequential MotifProp  RankProp 26.1 205 53.4 £
ROGso Sequential MotifProp  RankProp 12.7 293 581 2 1000
Column ‘Win’is the percentage of queries with better results in the first method. Column PSI-BLAST ROC10 —+—
‘Tie’ is the percentage of queries with tied results. Column ‘Lose’ is the percentage of 500 1 RankProp ROC10 ---3%---
queries with worse results in the first method. . Sequential MotifProp Rg&”}gr(ggggﬁ%i‘?ﬂ?&g.""é""

0 02 0.4 06 08 1
for eMOTIF MotifProp anda = 0.7 for PROSITE MotifProp. ROC10
Parameter is set to 100 in all experiments for consistency with 3500
RankProp. In Table 1 we show the average ROC scores across the
testqueries. All three networks produce improved Bg¥Cores over 3000 Py
PSI-BLAST, while the PROSITE anidmer networks also improve

ROGC;p and ROG, and the eMOTIF network produces much weaker 2500
ROG; scores. The comparison of ROC scores between the Motif-
Prop methods and PSI-BLAST or RankProp is shown in Figure 3 & 2000
and Table 2. We can conclude from our results that MotifProp with 5
various types of motifs gives significant improvement over the PSI-
BLAST ranking, but in terms of RO& performance, it does not
perform quite as strongly as RankProp with our network setup and 10
parameter choices. We note that there also exists an adaptive ver-
sion of RankProp, where the weighting parametem the edges is
allowed to change per query. By learning a rule for adapting sigma

ences

S

1500

Number

PSI-BLAST ROC50 —+—
RankProp ROC50 -------
k-mer MotifProp ROC50 -+
SeqL.JentiaI MotifPrqp ROC50 (PR.OSITE+k-mer). 8

using the training set as explained in the supplementary material 0 0.2 0.4 0.6 0.8 1

500

for Westonet al. (2004), adaptive RankProp achieved an ROC
performance of 0.6502, significantly outperforming PSI-BLAST.
However, as MotifProp can also be used with the same adaptive rig 3. Comparison of the ROC scores of PSI-BLAST, RankProp and Moti-
technique, for simplicity we did not do this final tuning step and reportfprop for test queries. The graph plots the total number of queries for which
results with non-adaptive versions of both RankProp and Motif-a given method exceed an RQ€core threshold«(= 1, 10 and 50).

Prop. We observe in all experiments a steep improvement of ROC

scores at aroun¢D.7,0.9. We found most of the improved queries . . . .
from below 0.7 to this region are members of the immunoglobulin?"2 S(_aquentla.l MotlfP_rop for protein-motif network
superfamily, which is the largest superfamily in the SCOP data- with multiple motif sets

base. This suggests that MotifProp can exploit the cluster of proteiiVe experiment with a protein-motif network using two sets of motifs,
sequences with the protein-motif network just as RankProp doePROSITE motifs and-mers. In the first step of sequential Motif-
(Westonet al., 2004). Prop, we run the MotifProp algorithm between protein nodes and

ROC50
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0.8 T T T T T T - 1f8%9a : Chain A of hypothetical protein y185 from Baker's yeast
(Saccharomyces cerevisiae)
0.7 E
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lerza: Chain A of N-carbamoyl-D-aminoacid amidohydrolase
PROSITE PPV ]
| PS00633: Uncharacterized protein [~ ~ 71 Alignment between 129
| | family UPF0012 signature —__ : and lerz in the motif region
Fig. 4. Comparison of average positive predictive values of PROSITE motifs
for 330 superfamilies before and after propagation. ) o ) o )
Fig. 5. Identification of potential motif hit through MotifProp. PROSCAN
cannot find a hit of motif PS01227 on chain A of SCOP domain ler2, while
) o MotifProp suggests that it is a potentially related motif. The aligned region
Table 3. Comparison of PROSITE motif hits before and after propaga- 5, 1er24 shares similar structure pattern with the PS01227 motif region on
tion for domains from Chaperone J-domain superfamily and domains fro”bhain A of SCOP domain 1f89.
Nitrilase/N -carbamoylp-aminoacid amidohydrolase superfamily (b
amidohydrolase) — 2 ’
1hdja: Chain A of DnaJ chaperone, N-tenminal (J) domain
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Fig. 6. Identification of potential motif hit through MotifProp. PROSCAN

cannot find a hit of motif PS00636 on chain A of SCOP domain 1fpo, while

A cross denotes a motif hit before propagation and a circle denotes a hit after. MotifProp suggests that it is a potentially related motif. The aligned region
on 1fpo shares similar structure pattern with the PS00636 motif region on
chain A of SCOP domain 1hdj.

PROSITE motifs. Afterwards, keeping the activation values from

the first round for the protein nodes, a second round of MotifProp ) ) ] )

propagates between the protein nodesianers. We directly usethe  3-3  PROSITE motif selection with MotifProp

optimale = 0.7 (selected using the training set) for the PROSITETo show that MotifProp is a natural way for motif feature selection,

MotifProp in the first step, and parameter= 0.55 is picked by we compare the PROSITE maotif hits detected by the PROSCAN

again using the training set for tikemer MotifProp in the second program and top-ranked PROSITE motifs given by activation scores

step. The comparisons of ROC scores for PSI-BLAST, RankPropfrom MotifProp. Here, we retrieve the same number of motifs

k-mer MotifProp and sequential MotifProp on test queries are showrirom MotifProp-ranked list as the number of PROSCAN-detected

in Table 1 and Figure 3. A pairwise comparison between RankPropnotif hits to make them easily comparable. We report the aver-

and sequential MotifProp is reported in Table 2. On average, thage positive predictive value (PPV) (Ben-Hur and Brutlag, 2005)

sequential MotifProp based on PROSITE motifs &nders achieves  of motif hits by SCOP superfamilies. Here, PPV is the ratio of the

stronger performance on RQCcomparable RO but slightly occurrence of a PROSITE motif in a SCOP superfamily, i.e.

weaker ROGy compared with RankProp. ppv(m) = % where coun@n) is the occurrence afz and
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Fig. 7. Examples of motif-rich regionsa)f Motif-rich regions on chain B of arsenite oxidase protein from the ISP protein superfamily. (Left) The PDB sequence
anotation (PDB id 1g8k) and motif-rich regions are given. There are no PROSITE motif hits for this sequence. (Right) The 3D protein structure isishown w
motif-rich regions in yellow. The ligands are indicated as pink balls. The two motif-rich regions in the bottom-right of the picture are locatetediiteof

two different subunits.k) Motif-rich regions on chain A of metallo beta-lactamaisgom bacillus cereus 569/h/9 from the metallo-hydrolase/oxidoreductase
protein superfamily. (Left) The PDB sequence anotation (PDB id 2bc2), PROSITE motif regions and motif-rich regions are given. (Right) The 3D protein
structure is shown with motif-rich regions in yellow. The zinc molecule is shown in gray.

couniim|S) is the occurrence ok in S. A PPV reflects how spe- some motifs that do not occur in any test domain in the table, such

cific a motif is with respect to a superfamily. In other words, motifs as PS00920 and PS00921 (Nitrilases/cyanide hydratase signatures)

with higher PPVs can characterize the superfamily better since theder Nitrilase/N-carbamoylp-aminoacid amidohydrolase superfam-

motifs are rarely observed elsewhere. In Figure 4, we show that thily and PS00637 @XXCXGXG DNAJ domain signature) for the

average PPVs of motifs by superfamilies are higher in the MotifProp-Chaperone J-domain superfamily. These motifs are reported to be

induced feature representation than in the PROSCAN-detected onfunctionally related to the superfamilies in previous works (Kobay-

The result suggests that MotifProp selects more specific motif feaashietal., 1993; Cyret al., 1994). In Figure 5 and Figure 6, we show

tures for the 330 SCOP superfamilies withl sequence in the that we can identify the potential motif regions on chain A of ler2

test set. and on chain A of 1fpo through MotifProp, although the PROSCAN
We also look closer into several SCOP superfamilies with theprogram cannot detect the motif hits on these domains.

most improvement of average PPV and find two examples of par-

ticular interest: Nitrilasé¥-carbamoylp-aminoacid amidohydro-

lase (SCOP 1.59 superfamily d.160.1) and Chaperone J-domai@4 Motif-rich region analysis

(SCOP 1.59 superfamily a.2.3). In Table 3, we show the changdo study the motif-rich regions, we map the activation score of #ach

of motif hits for the domains from these two superfamilies. merback on the query sequence to get an activation score distribution

MotifProp gets rid of frequently matched short PROSITE motifs over positions. We take those positions with high score density as

(PS00003, PS00004, PS00005, PS00006, PS00007 and PS000@8) motif-rich regions. To show that activated motifs from MotifProp

and identifies more important functional motifs, i.e. PS01227 forare potentially useful for analyzing structural features, we manually

Nitrilase/N -carbamoylp-aminoacid amidohydrolase and PS00636 exam the motif-rich regions in two superfamilies with high MotifProp

for Chaperone J-domain. More interestingly, MotifProp also detectROG, scores. By comparing them with PDB annotations, we identify
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