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ABSTRACT
Motivation: Sequence similarity often suggests evolutionary relation-
ships between protein sequences that can be important for inferring
similarity of structure or function. The most widely-used pairwise
sequence comparison algorithms for homology detection, such as
BLAST and PSI-BLAST, often fail to detect less conserved remotely-
related targets.
Results: In this paper, we propose a new general graph-based
propagation algorithm called MotifProp to detect more subtle simil-
arity relationships than pairwise comparison methods. MotifProp is
based on a protein-motif network, in which edges connect proteins
and the k -mer based motif features that they contain. We show that
our new motif-based propagation algorithm can improve the ranking
results over a base algorithm, such as PSI-BLAST, that is used to ini-
tialize the ranking. Despite the complex structure of the protein-motif
network, MotifProp can be easily interpreted using the top-ranked
motifs and motif-rich regions induced by the propagation, both of which
are helpful for discovering conserved structural components in remote
homologies.
Availability: http://www.cs.columbia.edu/compbio/motifprop
Contact: cleslie@cs.columbia.edu

1 INTRODUCTION
The most widely-used algorithms for detecting homology in protein
sequences have focused on estimating pairwise sequence similarity
with sequence–sequence or profile–sequence alignments (Altschul
et al., 1990, 1997; Watermanet al., 1991). These algorithms use
dynamic programming or faster heuristic strategies to produce
optimal or nearly optimal pairwise local alignments. Moreover, these
algorithms exploit a well-established methodology for estimating an
E-value to assess the statistical significance of the alignment score
between the query and target sequences. However, for remotely
related protein sequences, even profile-based ranking algorithms
like PSI-BLAST will fail to detect sequence similarity due to the
weak statistical significance of the computed alignments. Interest-
ingly, probably because of the lack of a comprehensive enough
protein motif database, very few of these previous works make use of
motifs to rank proteins. If we simply consider the common motif hits
between proteins as the similarity measure, existing motif databases,
such as PROSITE database (Huloet al., 2004) and eMOTIF data-
base (Nevill-Manninget al., 1998), are more useful for characterizing
homologous proteins than for inferring remote homologies.

∗To whom correspondence should be addressed.

In this paper, we introduce a new graph-based rank propaga-
tion algorithm called MotifProp, where we represent relationships
between proteins and motif-based features in a protein-motif net-
work. Instead of relying on a direct measure of pairwise sequence
similarity, we assume that most distantly-related proteins share a
conserved structure or at least some common conserved structural
components. A natural way of trying to capture these subtle sim-
ilarities is to measure whether the proteins share sequence motifs
that might correspond to conserved structural elements. To incorpor-
ate this notion into a network structure, we define the protein-motif
network—where similarity between protein nodes is indirectly rep-
resented by the set of edges connecting protein nodes and motif-based
feature nodes. This network is a bipartite graph, where edges connect
protein nodes and motif nodes, and a set of common motifs in the
network can serve as ‘bridges’ connecting similar proteins. To meas-
ure the similarity to a given query, each protein node and motif node
is first assigned an activation score with an initial ranking algorithm,
which is called the base algorithm. The MotifProp algorithm propag-
ates activation scores through the protein-motif network to learn
rankings relative to the query sequence. After convergence of the
algorithm, the final protein node activation scores are used to rank
the sequences and retrieve homologs of the query. An illustration of
a protein-motif network is shown in Figure 1.

For MotifProp to perform well in the ranking task, we need to
choose an appropriate set of feature motifs that can capture the
remote homology information we are interested in. Recent super-
vized remote homology detection approaches (Karpluset al., 2001;
Jaakkolaet al., 1999; Liao and Noble, 2002; Leslieet al., 2004;
Ben-Hur and Brutlag, 2003; Kuanget al., 2005) have used many
different representations of protein sequences, including string ker-
nels based on short inexact-matchingk-mer features. Among these
recent methods, SVM classification using the profile kernel (Kuang
et al., 2005)—ak-mer based string kernel defined on profiles—is
one of the most successful methods for remote homolog detection.
In the profile kernel, each sequence is associated with a sequence
profile (derived, for example, from PSI-BLAST) and eachk-length
window of the profile is implicitly mapped to a vector in the fea-
ture space indexed by allk-length subsequences from the alphabet
of amino acids; the non-zero features in this vector correspond to
k-mers similar to the profile. In this paper, we usek-mers as motifs
in the protein-motif network, and we define a set ofk-mer features
that are similar to windows of a protein sequence either by using
a profile (similar to the profile kernel approach) or by using fixed
substitution probabilities or exactk-mer matches. In addition, we
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Fig. 1. Protein-motif bipartite network. Edges in the network represent occur-
rences of a motif within a protein sequence. The edges are weighted according
to the significance of the motif occurrence.

experiment with using eMOTIFs (Ben-Hur and Brutlag, 2003) and
PROSITE motifs (Huloet al., 2004) in the network. We also explore
how to integrate complementary motif sets, such as PROSITE motifs
andk-mers, with a sequential MotifProp algorithm to achieve more
refined ranking performance.

Our earlier work introducing the RankProp algorithm (Weston
et al., 2004) showed that one can exploit the global structure of the
protein similarity network to achieve significant improvement over
PSI-BLAST for the protein ranking problem. The protein similar-
ity network is a weighted graph defined on a large protein database,
where protein sequences are the nodes and pairwise PSI-BLAST
E-values are used to compute edge weights. RankProp is able to
propagate through densely connected regions of the protein similar-
ity network to detect subtle sequence relationships that are missed by
methods like PSI-BLAST, which only uses local similarity near the
query. Compared with MotifProp, the RankProp algorithm has two
major drawbacks. First, it does not provide an explanation of why the
target is related to the query by detecting conserved sequence inform-
ation between them. Second, considerable pre-processing time is
needed to compute the similarity network for a large database.

Other related work on network-based propagation algorithms has
focused on information retrieval on the web (Kleinberg, 1999) and
classification tasks in natural language processing (Radev, 2004).
Kleinberg models the hyperlinked web network as a bipartite graph
comprising two sets of nodes—hubs (web pages with many pointers
to related pages) and authorities (web pages pointed to by hubs)—
and propagates activation scores between these node sets. Radev
proposes a tripartite updating scheme for a number classification task
in text processing by defining a bipartite graph where feature vertices
are connected with labeled examples and unlabeled examples, and he
cyclically propagates activation between these three kinds of nodes.

In contrast, we formulate a propagation algorithm for learning
a ranking in a bipartite graph of proteins and motifs. MotifProp
takes the ranking scores of any base ranking algorithm, such as
PSI-BLAST, as the initial activation values for protein nodes and
initializes activation scores of the motif nodes estimated by match-
ing motifs against the query. It then performs a simple two-direction
propagation algorithm that can efficiently propagate activation val-
ues between protein nodes and motif nodes to improve over the initial
ranking.

In addition to obtaining a ranking of proteins relative to the query,
MotifProp induces a ranking of motif features. Those top-ranked
motif features are considered important to the ranking and suggest
common conserved components among distantly-related proteins. It
is biologically interesting to analyze these selected motifs for a better
understanding of the relation between motifs and protein superfam-
ilies. Another important property of MotifProp is that high motif
activation values suggest consensus patterns with the relatives of the
query sequence. If we map the motif activation values back to their
original matching positions on the query sequence, then those regions
that are important for ranking will be associated with high activation
scores. These high activation or ‘motif-rich’ regions are particularly
useful for motif discovery and structural study, and they can provide a
biological explanation of the performance improvement over the base
ranking algorithm, especially for queries where alignment-based
methods cannot successfully retrieve target sequences.

Our paper is organized as follows. In Section 2, we describe
all the networks and their corresponding propagation algorithms.
In Section 3, we report our experiments on a benchmark data-
set of query sequences that have known structural annotations,
based on the SCOP database (Murzinet al., 1995). We also ana-
lyze structural and functional properties of top-ranked motifs and
motif-rich regions induced by MotifProp. Finally, in Section 4, we
discuss several possible future directions for our network propa-
gation work.

2 METHODS
In this section, we introduce our new method, the MotifProp algorithm. Sev-
eral natural variants of MotifProp based on different protein-motif networks
with motif nodes from either one or multiple motif databases are also dis-
cussed. Finally, we describe how to extract motif-rich regions for protein
superfamilies using the MotifProp-induced feature activation scores.

2.1 MotifProp: protein-motif bipartite network for
rank propagation

A protein-motif bipartite network has two sets of nodes, one setP representing
protein sequences and another setF representing motifs. Edges in the graph
only connect nodes inP with nodes inF, giving a bipartite graph. Letq be
the query sequence,H the connectivity matrix between protein vertices and
motif vertices, andP andF the vectors of activation values associated with
these two sets of nodes with respect toq. MotifProp uses an alternating update
rule. In one direction, we propagate the activation values of the protein nodes
to the connected feature nodes through weighted edges; in the other direction,
we propagate the activation values of the motif nodes to the connected protein
nodes through those edges. In both directions, we use a parameterα ∈ (0, 1)
to control the amount of propagation across the bipartite graph relative to
reinforcement of the initial activation values. The update rules for thet th
round of propagation are given by

P t+1 = αH̃F t + (1 − α)P 0

F t+1 = αH̃ ′P t + (1 − α)F 0,

whereH̃ is obtained fromH by normalizing so that entries in each row sum
to 1 andH̃ ′ is a similarly row-normalized version of the transpose ofH . F 0

is the vector of initial motif activation values andP 0 is the vector of initial
activation values from the base ranking algorithm, each normalized so that
entries sum to 1.

The proof of the convergence for the MotifProp algorithm is related to
the proof in Zhouet al. (2004). We reformulate the MotifProp algorithm
as a propagation algorithm with protein nodes and motif nodes. In this

3712



MotifProp algorithm for protein ranking

formulation, the update rule is given by(
P

F

)t+1

= α
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(
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F

)0

.

The connectivity matrix (of size|P | + |F | by |P | + |F |) can be divided
into four block submatrices, one between protein nodes (|P | by |P |), one
between motif nodes (|F | by |F |), one between protein nodes and motif
nodes (|P | by |F |) and a final one between motif nodes and protein nodes.
For our algorithm, the diagonal blocks are all 0s, so the row-normalization
of H and its transpose is the same as row-normalizing the full|P | + |F | by
|P | + |F | connectivity matrix to a stochastic matrix, and the bi-directional
update rule is identical to the single update rule given above. The original
proof of convergence can therefore be directly applied to our algorithm.

In various propagation algorithms in the machine learning literature, edge
weights between nodes are often based on a notion of distance between node
data examples. Typically, given a distanced(i, j) between nodesi andj , the
corresponding edge weight is first set to exp−d(i, j)/σ , whereσ > 0 is a
parameter, and then normalized so that the sum of weights of the (directed)
edges terminating at any vertex is 1. In RankProp, PSI-BLASTE-values
were used as the distance function between protein nodes to compute these
Gaussian edge weights, and the Gaussian of theE-value distance from the
query to each protein node was used to initialize the activation scores. Fol-
lowing the same motivation, for MotifProp the initial activation valuesP 0,
F 0 and (unnormalized) edge weightHij are given by

P 0
j = exp(−Sq(j)/σ )

F 0
j = exp(−Eq(j)/σ )

Hij = exp(−Ei(j)/σ ),

whereσ > 0,Sq(j) is PSI-BLASTE-value assigned to proteinj given query
q andEi(j) is theE-value associated with a match of thej -th motif in the
i-th protein. Sequences that are left unranked by PSI-BLAST are assigned
an initial activation score of 0, assuming a very largeE-value against the
query. Various types of motifs can be used in the protein-motif network, such
as the eMOTIF database, the PROSITE database, or the set of all possible
k-length sequences from the amino acid alphabet. To estimateE-values for
motif matches, we follow the methodology of ungapped alignments (Altschul
et al., 1990), in which theE-value of an optimal match with score S is
approximated by

E(S) = K|x||f |e−λS ,

whereK andλ are parameters depending on the substitution matrix and back-
ground frequency of amino acids, and|x| and|f | are the length of protein
x and motiff . We note that the PSI-BLASTE-values, used to compute
initial activation scores for protein nodes, and the motifE-values, used to
compute edge weights and initial activation scores for motif nodes, are not
directly comparable, since they giveE-values for different statistical contexts.
Moreover, in the latter case, theE-value formula is motivated by asymptotic
theory, so the dependence on the length of the motif is only a rough approx-
imation. Nevertheless, the difference between theseE-values is not a concern
here, since protein nodes and motif nodes play different roles in the MotifProp
algorithm: protein and motif activation scores are normalized separately, and
the algorithm induces separate rankings of proteins and motifs relative to
the query. We emphasize that theE-values are used only to obtain a notion
of distance between motifs and protein sequences; other reasonable choices
of distance should also work.

If we usek-mers as feature nodes, allk-mers that match exactly or inexactly
to k-length subsequences of sequencex are represented by edges between
nodex and the corresponding motif nodes in the bipartite graph. A good
way of computing the matches betweenk-mers and sequences is motivated
by the profile-basedk-mer mapping (Kuanget al., 2005). In this case, the
substitution score between ak-merf and sequencex is maxp Sf (xp..p+k−1),
wherep = 1...|x| − k + 1 andSf (xp..p+k−1) = ∑k

l sl (fl ,xp+l−1) is a sum
of log odds substitution scoressl(·, ·) depending on the profile at position

p + l −1, and all thek-mers with a substitution score less than a user-defined
threshold are considered to be motif hits against sequencex. If we do not
have a profile for our protein sequences, then we can restrict the network
to include only edges that correspond to exact occurrences ofk-mersf in
sequencesx (similar to thek-spectrum mapping (Leslieet al., 2002)) and use
the diagonal entries of a fixed substitution matrix for scoring. (In principle,
the parametersK andλ depend on the profile, but for simplicity, we use the
same parameter values for all sequences.)

One can also consider using motifs derived from the PROSITE database.
However, PROSITE contains different types of motifs, such as regular expres-
sions and profiles, making it hard to establish a consistent substitution scoring
system. For simplicity, we consider only exact matches between motifs and
sequences, and we estimate the substitution score using diagonal entries of
a fixed substitution matrix as described above. For the case of the eMOTIF
database, theE-value based on the substitution probability between amino
acids and amino acid groups is provided by the eBAS package (Huang and
Brutlag, 2001) and can be used directly for estimating edge weights.

The protein-motif network is much less expensive to compute than
the protein similarity network used with the RankProp algorithm (Weston
et al., 2004). Optimal sequence alignment requires time that is quadratic
in sequence length, rendering it expensive to compute in practice. In that
case, the time complexity for building a full protein similarity network is
O(

∑|P |
i=1

∑|P |
j=1(|pi ||pj |)), where|pi | denotes the length of protein sequence

pi . With heuristic algorithms, such as PSI-BLAST, we can obtain a reduced
complexity of approximatelyO(n logn) in sequence length. However, it is
still often prohibitively expensive to compute the similarity network if you
have a large database of proteins. On a SUN cluster with 20 host machines,
it takes longer than 1 month to compute a protein similarity network with
101 602 sequences from Swiss-Prot. On the other hand, the time complexity
for building a protein-motif network isO(

∑|P |
i=1

∑|F |
j=1 C(pi ,fj )), wherefj

denotes a motif andC is the time complexity for matching a motif against
a sequence, which is usually bounded byO(|pi |). Empirically, on a single
machine in the SUN cluster, it takes<2 days to compute a protein-motif
network with 101 602 sequences from Swiss-Prot and either 223 390 motifs
from the eMOTIF database, 1639 PROSITE motifs or all 160 000 4mers
(using exact matches).

2.2 Sequential MotifProp: integration of multiple
motif databases

Existing protein motif databases are built using various methods. They are
represented as position-specific scoring matrices (Huloet al., 2004), regu-
lar expressions (Nevill-Manninget al., 1998) ork-mers (Kuanget al., 2005).
Ideally we expect that the superset of all motifs will produce the most compre-
hensive protein-motif network. However, given different properties of these
motif sets, the expected number of motif hits and correspondingE-values for
a given query protein sequence can vary significantly across these motif sets.
This specificity difference makes combination of motif hits into a unified
scoring schema for MotifProp a hard problem. Our empirical experiments
suggest that a simple weighted linear combination of PROSITE motifs and
k-mer motifs does not improve over using each individual set of motifs (res-
ults not shown). It is also computationally intensive to cross-validate for an
optimal weighting between the motif sets, considering the possible number
of motif databases we could use. We propose a simple sequential MotifProp
based on protein-motif networks containing multiple motif sets to resolve this
specificity problem.

In a protein-motif network with multiple motif sets, motif nodesF can be
divided into ann-set partition{F(1),F(2), ...,F(n)}, in which F(i) is a set of
motifs from theith motif set. Edges only connect each subsetF(i)(i ∈ [1,n])
and protein verticesP . The edge weights are estimated using only on the
motif model for each individualF(i). The connectivity matricesH(i),n and
H ′

(i),n are normalized individually in the same manner as a protein-motif
network comprising verticesP andF(i) only. In this larger network, we run
MotifProp to convergence with each set of motifs forn sequential runs, using
the final activation values from theith motif set to initialize the activation
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Fig. 2. Mapping motif-rich regions. After motif propagation, each motif node is associated with an activation score. We map each motif back to the query
sequence and accumulate the activation scores for each position. Those positions with high scores are classified as motif-rich regions.

values for the(i +1)st motif set. This simple sequential MotifProp algorithm
avoids the normalization issue involved in combining different motif sets,
while allowing a cumulative and consistent updating to the activation values
of protein nodesP .

2.3 Identifying motif-rich regions
In the MotifProp algorithm, we learn a vector of activation values for both
protein nodes and motif nodes. Motifs with high activation values are those
connecting the query sequence and its homologs by strong edges. Thus,
their corresponding matches on the query sequence correspond to motifs
that are conserved during the evolution of the protein superfamily or fold.
To analyze these motif regions, we compute an accumulated activation value
for each position on the query sequence and mark those positions with high
score density as regions of interest using∑

j

F ∗
j δ(p, j),

whereF ∗ is the vector of final activation values for all motif features and
δ(p, j) is a binary function denoting whether thep-th position falls inside
a match of thej -th feature (Fig. 2). With this mapping, a distribution of
activation scores can be obtained over the positions. We sort the positions
by their activation values and take the top-scoring positions that contribute
90% of the cumulative total score. We define these top-scoring positions to be
our motif-rich regions. We expect these regions to correspond to conserved
regions among homologs of the query, so they are potentially useful for
structural or functional motif analysis. In Section 3.4, we compare motif-rich
regions extracted in our experiment with PDB annotations, and we show the
corresponding functional and structural properties of motif-rich regions for
several superfamily examples.

3 EXPERIMENTS
We test MotifProp algorithm on 7329 protein domains with known
3D structures in the human-annotated SCOP database version 1.59
(Murzin et al., 1995). After purging with http://astral.berkeley.edu,
no pair of proteins have>95% sequence identity. Following the
setup in Westonet al. (2004), these 7329 sequences are divided
into a training set (4246 sequences) and a test set (3083 sequences).
The training set is used for estimating optimal parameters for the
propagation algorithm. In order to propagate through a large net-
work, we use 101 602 proteins from Swiss-Prot (version 40) as

additional nodes. For all rank propagation algorithms we perform
20 iterations, which is generally sufficient for convergence, and we
compare against PSI-BLAST and RankProp for the protein ranking
task of retrieving target sequences from the same superfamily as the
query. Although the propagations are on sequences from both the
SCOP database and the Swiss-Prot database, we only consider the
ranking among SCOP domains, i.e. the performance is reported on
the ranking of SCOP domains obtained when Swiss-Prot sequences
are removed from the ranked list.

We evaluate the ranking performance by using three variants of the
receiver operating characteristic (ROC) score (Hanley and McNeil,
1982). For a given query, this score measures the area under a curve
that plots true positives as a function of false positives for varying
classification thresholds. The ROCn score computes this score up to
then-th false positive (Gribskov and Robinson, 1996). The score is
normalized to fall between 0 and 1, and for this problem, the expec-
ted score from a random query is close to 0. For each method, we
report the mean ROC50, ROC10 and ROC1 scores across all queries
in the test set. These three scores place increasing emphasis on pro-
ducing high-quality predictions at the top of the ranked list. ROC1 is
probably of the most interest for this application.

3.1 Protein-motif rank propagation
We test the propagation algorithm on three different protein-motif
networks, one produced from the eMOTIF database (version 3.6)
(Ben-Hur and Brutlag, 2003), one from the PROSITE motif database
(version 18.34) (Huloet al., 2004) and the last produced from ak-
mer feature mapping (Leslieet al., 2002; Kuanget al., 2005). We
use the eBAS package (Ben-Hur and Brutlag, 2003) to scan proteins
against the eMOTIF database and the PROSCAN package (Gattiker
et al., 2002) for scanning against the PROSITE database. For the
k-mer mapping, we setk = 4, and we use a profile feature mapping
(Kuanget al., 2005) for SCOP sequences with a threshold of six,
but for improved efficiency, we use an exactk-mer matching (Leslie
et al., 2002) for Swiss-Prot sequences. The PSI-BLAST profiles of
SCOP sequences are produced by searching against the SCOP dataset
plus Swiss-Prot sequences.

By measuring the error rate on the training set queries, the para-
meterα = 0.85 is chosen for thek-mer MotifProp algorithm,α = 0.4
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Table 1. Comparison of overall ranking quality produced by various
algorithms

Algorithm ROC1 ROC10 ROC50

Sequential MotifProp 0.640 0.663 0.688
k-mer MotifProp 0.621 0.648 0.679
RankProp 0.592 0.667 0.725
PROSITE MotifProp 0.600 0.643 0.664
eMOTIF MotifProp 0.527 0.612 0.666
PSI-BLAST 0.594 0.616 0.641

The table lists, for each algorithm, the mean ROC1, ROC10 and ROC50 scores over 3083
test query sequences.

Table 2. Pairwise comparisons of algorithms

ROC type Algrotihm 1 Algorithm 2 Win
(%)

Lose
(%)

Tie
(%)

ROC1 k-mer MotifProp PSI-BLAST 25.0 2.6 72.4
ROC10 k-mer MotifProp PSI-BLAST 28.0 3.4 68.6
ROC50 k-mer MotifProp PSI-BLAST 32.4 9.9 57.8
ROC1 Sequential MotifProp RankProp 27.3 12.6 60.1
ROC10 Sequential MotifProp RankProp 26.1 20.5 53.4
ROC50 Sequential MotifProp RankProp 12.7 29.3 58.1

Column ‘Win’ is the percentage of queries with better results in the first method. Column
‘Tie’ is the percentage of queries with tied results. Column ‘Lose’ is the percentage of
queries with worse results in the first method.

for eMOTIF MotifProp andα = 0.7 for PROSITE MotifProp.
Parameterσ is set to 100 in all experiments for consistency with
RankProp. In Table 1 we show the average ROC scores across the
test queries. All three networks produce improved ROC50 scores over
PSI-BLAST, while the PROSITE andk-mer networks also improve
ROC10 and ROC1, and the eMOTIF network produces much weaker
ROC1 scores. The comparison of ROC scores between the Motif-
Prop methods and PSI-BLAST or RankProp is shown in Figure 3
and Table 2. We can conclude from our results that MotifProp with
various types of motifs gives significant improvement over the PSI-
BLAST ranking, but in terms of ROC50 performance, it does not
perform quite as strongly as RankProp with our network setup and
parameter choices. We note that there also exists an adaptive ver-
sion of RankProp, where the weighting parameterσ on the edges is
allowed to change per query. By learning a rule for adapting sigma
using the training set as explained in the supplementary material
for Westonet al. (2004), adaptive RankProp achieved an ROC1

performance of 0.6502, significantly outperforming PSI-BLAST.
However, as MotifProp can also be used with the same adaptiveσ

technique, for simplicity we did not do this final tuning step and report
results with non-adaptive versions of both RankProp and Motif-
Prop. We observe in all experiments a steep improvement of ROC
scores at around(0.7, 0.9). We found most of the improved queries
from below 0.7 to this region are members of the immunoglobulin
superfamily, which is the largest superfamily in the SCOP data-
base. This suggests that MotifProp can exploit the cluster of protein
sequences with the protein-motif network just as RankProp does
(Westonet al., 2004).
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Fig. 3. Comparison of the ROC scores of PSI-BLAST, RankProp and Moti-
fProp for test queries. The graph plots the total number of queries for which
a given method exceed an ROCn score threshold (n = 1, 10 and 50).

3.2 Sequential MotifProp for protein-motif network
with multiple motif sets

We experiment with a protein-motif network using two sets of motifs,
PROSITE motifs andk-mers. In the first step of sequential Motif-
Prop, we run the MotifProp algorithm between protein nodes and
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Fig. 4. Comparison of average positive predictive values of PROSITE motifs
for 330 superfamilies before and after propagation.

Table 3. Comparison of PROSITE motif hits before and after propaga-
tion for domains from Chaperone J-domain superfamily and domains from
Nitrilase/N -carbamoyl-d-aminoacid amidohydrolase superfamily (N/N -d
amidohydrolase)

ID Chaperone J-domain N/N -d amidohydrolase
1fpoa1 1hdja1 1xbl 1fafa 1gh6a 1emsa2 1f89a 1er2a

PS00003 X X
PS00004 X
PS00005 X X X XO X
PS00006 X X XO XO XO XO X
PS00007 X X XO
PS00008 XO XO XO X XO XO XO
PS00636 O XO XO XO
PS00637 O O O O
PS00920 O O O
PS00921 O O O
PS01227 XO XO O
PS50076 XO XO XO XO
PS50263 XO XO XO
PS50910 O

A cross denotes a motif hit before propagation and a circle denotes a hit after.

PROSITE motifs. Afterwards, keeping the activation values from
the first round for the protein nodes, a second round of MotifProp
propagates between the protein nodes andk-mers. We directly use the
optimalα = 0.7 (selected using the training set) for the PROSITE
MotifProp in the first step, and parameterα = 0.55 is picked by
again using the training set for thek-mer MotifProp in the second
step. The comparisons of ROC scores for PSI-BLAST, RankProp,
k-mer MotifProp and sequential MotifProp on test queries are shown
in Table 1 and Figure 3. A pairwise comparison between RankProp
and sequential MotifProp is reported in Table 2. On average, the
sequential MotifProp based on PROSITE motifs andk-mers achieves
stronger performance on ROC1, comparable ROC10 but slightly
weaker ROC50 compared with RankProp.

Fig. 5. Identification of potential motif hit through MotifProp. PROSCAN
cannot find a hit of motif PS01227 on chain A of SCOP domain 1er2, while
MotifProp suggests that it is a potentially related motif. The aligned region
on 1er2a shares similar structure pattern with the PS01227 motif region on
chain A of SCOP domain 1f89.

Fig. 6. Identification of potential motif hit through MotifProp. PROSCAN
cannot find a hit of motif PS00636 on chain A of SCOP domain 1fpo, while
MotifProp suggests that it is a potentially related motif. The aligned region
on 1fpo shares similar structure pattern with the PS00636 motif region on
chain A of SCOP domain 1hdj.

3.3 PROSITE motif selection with MotifProp
To show that MotifProp is a natural way for motif feature selection,
we compare the PROSITE motif hits detected by the PROSCAN
program and top-ranked PROSITE motifs given by activation scores
from MotifProp. Here, we retrieve the same number of motifs
from MotifProp-ranked list as the number of PROSCAN-detected
motif hits to make them easily comparable. We report the aver-
age positive predictive value (PPV) (Ben-Hur and Brutlag, 2005)
of motif hits by SCOP superfamilies. Here, PPV is the ratio of the
occurrence of a PROSITE motifm in a SCOP superfamilyS, i.e.
ppv(m) = count(m|S)

count(m)
, where count(m) is the occurrence ofm and
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Fig. 7. Examples of motif-rich regions. (a) Motif-rich regions on chain B of arsenite oxidase protein from the ISP protein superfamily. (Left) The PDB sequence
anotation (PDB id 1g8k) and motif-rich regions are given. There are no PROSITE motif hits for this sequence. (Right) The 3D protein structure is shown with
motif-rich regions in yellow. The ligands are indicated as pink balls. The two motif-rich regions in the bottom-right of the picture are located at theinterface of
two different subunits. (b) Motif-rich regions on chain A of metallo beta-lactamaseii from bacillus cereus 569/h/9 from the metallo-hydrolase/oxidoreductase
protein superfamily. (Left) The PDB sequence anotation (PDB id 2bc2), PROSITE motif regions and motif-rich regions are given. (Right) The 3D protein
structure is shown with motif-rich regions in yellow. The zinc molecule is shown in gray.

count(m|S) is the occurrence ofm in S. A PPV reflects how spe-
cific a motif is with respect to a superfamily. In other words, motifs
with higher PPVs can characterize the superfamily better since these
motifs are rarely observed elsewhere. In Figure 4, we show that the
average PPVs of motifs by superfamilies are higher in the MotifProp-
induced feature representation than in the PROSCAN-detected one.
The result suggests that MotifProp selects more specific motif fea-
tures for the 330 SCOP superfamilies with>1 sequence in the
test set.

We also look closer into several SCOP superfamilies with the
most improvement of average PPV and find two examples of par-
ticular interest: Nitrilase/N -carbamoyl-d-aminoacid amidohydro-
lase (SCOP 1.59 superfamily d.160.1) and Chaperone J-domain
(SCOP 1.59 superfamily a.2.3). In Table 3, we show the change
of motif hits for the domains from these two superfamilies.
MotifProp gets rid of frequently matched short PROSITE motifs
(PS00003, PS00004, PS00005, PS00006, PS00007 and PS00008)
and identifies more important functional motifs, i.e. PS01227 for
Nitrilase/N -carbamoyl-d-aminoacid amidohydrolase and PS00636
for Chaperone J-domain. More interestingly, MotifProp also detects

some motifs that do not occur in any test domain in the table, such
as PS00920 and PS00921 (Nitrilases/cyanide hydratase signatures)
for Nitrilase/N -carbamoyl-d-aminoacid amidohydrolase superfam-
ily and PS00637 (CXXCXGXG DNAJ domain signature) for the
Chaperone J-domain superfamily. These motifs are reported to be
functionally related to the superfamilies in previous works (Kobay-
ashiet al., 1993; Cyret al., 1994). In Figure 5 and Figure 6, we show
that we can identify the potential motif regions on chain A of 1er2
and on chain A of 1fpo through MotifProp, although the PROSCAN
program cannot detect the motif hits on these domains.

3.4 Motif-rich region analysis
To study the motif-rich regions, we map the activation score of eachk-
mer back on the query sequence to get an activation score distribution
over positions. We take those positions with high score density as
our motif-rich regions. To show that activated motifs from MotifProp
are potentially useful for analyzing structural features, we manually
exam the motif-rich regions in two superfamilies with high MotifProp
ROC1 scores. By comparing them with PDB annotations, we identify
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common functional and structural characteristics captured by those
regions in the same superfamily.

The first example is from the ISP (iron sulfur protein) superfam-
ily (SCOP 1.59 superfamily b.33.1). Proteins in this superfamily
consist of two conserved all-beta sub-domains. The small one has
a rubredoxin-like fold, and the larger one comprises six beta-stands
packed in either a sandwich of two three-stranded sheets or a closed
barrel. We find that our motif-rich regions correspond very well with
the ligand binding sites for all six sequences from this superfamily
in our test set. In Figure 7a, we illustrate this phenomenon for one
example from the superfamily, chain B of arsenite oxidase protein.

The second example is from the metallo-hydrolase/ oxidore-
ductase protein superfamily (SCOP 1.59 superfamily d.157.1). Pro-
teins in this superfamily have a duplicate of a beta-alpha-beta-alpha
motif, four layers of a/b/b/a and mixed beta-sheets. This protein uses
zinc as the natural cofactor. We find that the functional binding sites
with zinc are all captured by the motif-rich regions for all six mem-
bers of the superfamily in our test set. One of the six sequences, chain
A of metallo beta-lactamaseii protein, is illustrated in Figure 7b.

4 DISCUSSION
In this paper, we present the MotifProp algorithm, which performs
rank propagation through a protein-motif bipartite network, a global
network structure that represents similarity of protein sequences
through common occurrences of motifs. Experiments show that
MotifProp—used with eMOTIF, PROSITE, ork-mer motifs—can
significantly improve over PSI-BLAST for protein ranking. Motif-
Prop performs as well as the RankProp algorithm when measured
using ROC50 and ROC10 scores and outperforms RankProp based
on the more stringent ROC1 score, and MotifProp also offers the
ability to make motif selections and extract structurally and func-
tionally significant motif-rich regions of the query sequence. Case
studies on several protein superfamilies showed that MotifProp can
select more conserved motifs for SCOP superfamilies, and motif-rich
regions obtained from MotifProp coincide with PDB annotations of
active or binding sites. Furthermore, MotifProp significantly reduces
the expense of the all-versus-all network pre-computation (see
section 2.1).

One possible direction for extending MotifProp is to combine the
protein-motif bipartite network with the similarity network from
RankProp to form a hybrid network. However, in our preliminary
experiments we found that rank propagation in the hybrid network
did not outperform MotifProp or RankProp. We hypothesize that
the reason for the lack of improvement is that the PSI-BLASTE-
values used to define the similarity network contain much of the
same information as the motifs used as features in the bipartite
network. However, if we could use features that complement PSI-
BLAST alignment information, then we might be able to achieve
improvement through a hybrid network.
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