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Abstract: Obtaining accurate peptide identifications from
shotgun proteomics liquid chromatography tandem mass
spectrometry (LC-MS/MS) experiments requires a score
function that consistently ranks correct peptide-spectrum
matches (PSMs) above incorrect matches. We have
observed that, for the Sequest score function Xcorr, the
inability to discriminate between correct and incorrect
PSMs is due in part to spectrum-specific properties of the
score distribution. In other words, some spectra score well
regardless of which peptides they are scored against, and
other spectra score well because they are scored against
a large number of peptides. We describe a protocol for
calibrating PSM score functions, and we demonstrate its
application to Xcorr and the preliminary Sequest score
function Sp. The protocol accounts for spectrum- and
peptide-specific effects by calculating p values for each
spectrum individually, using only that spectrum’s score
distribution. We demonstrate that these calculated p
values are uniform under a null distribution and therefore
accurately measure significance. These p values can be
used to estimate the false discovery rate, therefore,
eliminating the need for an extra search against a decoy
database. In addition, we show that the p values are better
calibrated than their underlying scores; consequently,
when ranking top-scoring PSMs from multiple spectra, p
values are better at discriminating between correct and
incorrect PSMs. The calibration protocol is generally
applicable to any PSM score function for which an
appopriate parametric family can be identified.

Keywords: calibration • database search • peptide iden-
tification • tandem mass spectrometry

1. Introduction

At their core, database search methods for identifying
proteins from shotgun proteomics data rely upon a score
function that evaluates matches between peptides and spectra.
Algorithms such as Sequest1 first identify a set of candidate
peptides whose m/z values are close to the measured m/z of
the query spectrum and then select the candidate peptide that

maximizes this score function with respect to the query. In this
context, an optimal scoring function assigns the highest score
to the peptide that actually generated the spectrum.

However, identifying the best peptide for each spectrum only
solves half of the peptide identification problem. Once the best-
scoring peptide has been identified for every spectrum in a
given data set, the mass spectrometrist must determine which
of the resulting peptide-spectrum matches (PSMs) are correct.
In practice, only 5-30% of the PSMs in a given data set are
correct,2 so this latter phase is very important.

The simplest approach to separating correct from incorrect
PSMs is to rank them according to the same scoring function
that was used in the initial search. A perfect PSM scoring
function will rank all correct PSMs above all incorrect PSMs.
Real scoring functions, of course, are imperfect and generally
fail to achieve good separation. A common method to improve
the separation is to treat spectra with different properties
separately, for example, setting different score thresholds for
spectra of different charge states.2 But spectra differ by more
than just charge state. A more sophisticated approach would
correct for all effects that a particular spectrum has on its
corresponding score distribution.

For example, a simple ranking by the SEQUEST score
function Xcorr ignores two important effects, which are il-
lustrated in Figure 1. The figure shows that the distribution of
maximal Xcorr scores depends strongly upon (A) the properties
of the spectrum and (B) the number of candidate peptides that
the spectrum is searched against. Therefore, PSM scores
generated from two different spectra or the same spectrum
under two different search conditions might not be directly
comparable to one another.

In this work, we describe a protocol for correcting for the
effects shown in Figure 1. The resulting calibrated scores have
well-defined semantics and yield improved discrimination
between correct and incorrect PSMs. Our method uses the
distribution of PSM scores for a particular spectrum to calculate
a conditional p value for that score, P(S > Sthresh|H0, spectrum),
or the probability that that we would receive a score S greater
than or equal to a threshold score Sthresh given the null
hypothesis H0 and a particular spectrum.

To explain our method, we first need to describe three kinds
of mass spectrometry score distributions:

(1) the distribution of scores for all candidate peptides for
a particular spectrum under particular search conditions;

(2) the distribution of scores for the maximum scoring
peptide for a particular spectrum under particular search
conditions, a form of extreme value distribution; and
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(3) the distribution of the maximum scores for the maxi-
mum scoring peptides for a group of spectra under
particular search conditions.

Our method for calculating p values corrects for spectrum-
specific variation in (1) and (2) and is outlined here. First, for
a given spectrum, we compute a score (e.g., Xcorr) for all
candidate peptides, and we use the scores to learn the
parameters of a parametric score distribution (i.e., we fit to
distribution (1)). Second, we use the parameters of this score
distribution to compute a p value for the maximal score (i.e.,
we calculate a p value for the score under distribution (2)),
correcting for the difference in expected score due to variation
in the number of candidate peptides the spectrum is compared
to. In an optional third step, these p values can then be used
as input to standard multiple-hypothesis testing calculations
(e.g., see ref 3) to correct for the effects of distribution (3).

This method differs from other published probability cal-
culations for tandem mass spectrometry scores, which either
calculate a p value without conditioning on the spectrum (i.e.,
P(S > Sthresh|H0))4–8 or calculate a probability score that is not a
p value.9–11 These methods therefore do not control for the
effects shown in Figure 1.

A handful of methods do use spectrum-specific score
distributions, either to compare different score functions or to
calculate an E-value. For example, OMSSA12 uses the number
of candidate peptides to convert from p values (score (1) above)
to E-values. The method outlined in ref 13 uses a survival
function for (1) to calculate an E-value for a score taken from
(2). We do not claim any theoretical superiority for our method
relative to that of Fenyo et al.,13 rather, our method yields p
values with desirable statistical properties that, as demonstrated
in section 3.1, the Fenyo et al.13 method lacks. Recently, Alves
et al.14 described a methodology for calibrating PSM scores with
respect to a particular score function and laboratory. Unlike
previously reported E-values, the E-values computed by Alves
et al. incorporate all three of the effects mentioned above. Their
method uses a collection of reference spectra, searched against
a decoy database, to fit a calibration function for any given
scoring scheme. In contrast, our approach involves fitting the
full observed score distribution to a parametric distribution for
each particular spectrum. Alves et al. noted the desirability of
fitting to spectrum-specific distributions but were unable to
do so because most search algorithms do not report the full
score distribution. This obstacle is overcome for Sequest by
our reimplementation of Xcorr in the software package Crux.15

In this work, we demonstrate how to compute p values for
Xcorr and the preliminary Sequest score Sp. We show that these

p values are valid; that is, the p values are uniform under the null
hypothesis, and we show that the p values improve discrimination
between correct and incorrect PSMs relative to their underlying
scores. Contingent upon identifying an appropriate parametric
family of distributions, the proposed statistical calibration protocol
can be applied to any PSM score function.

1.1. Approach. Our primary goal is to calculate accurate p
values for PSMs. We divide our approach into two stages, each
controlling for one of the effects shown in Figure 1. The first
stage controls for the difference in maximal score distribution
due to the particular spectrum being searched (Figure 1A and
distribution (1) from the Introduction) and is described in
section 1.1.1. The second stage controls for the difference in
score distribution due to the number of peptides being
searched against (Figure 1B and distribution (2) from the
Introduction) and is described in section 1.1.2.

1.1.1. Calculating p Values. Calculating p values from a
distribution of scores can be approached in one of two ways:
using a nonparametric method, where there are no assump-
tions made about the underlying distribution, or using a
parametric method, where the distribution is assumed to follow
a particular form. We are concerned with calculating p values
for the most extreme peptide in a score distribution. Thus, we
choose to estimate p values parametrically, because parametric
methods can extrapolate to areas of a distribution (such as the
tail) where there is little or no data.

We have found empirically that both the Sp and Xcorr score
distributions for a particular spectrum can be approximated
using a Weibull distribution.16 The three-parameter Weibull
distribution has the following form:

where f(x; �, η, µ) is the probability density function, F(x; �, η, µ)
is the cumulative distribution function (CDF), � is the shape
parameter, η is the scale parameter (analogous to the standard
deviation of the normal distribution), and µ is the location
parameter (analogous to the mean of the normal distribution).
An example of a fit to an Xcorr distribution is seen in Figure 3.
To avoid fitting scores from correct PSMs, we remove the
maximal score before fitting the Weibull distribution. Unlike
in sequence comparison, in mass spectrometry, sequence
homology does not introduce a substantial number of high-

Figure 1. Dependence of score distributions on the query spectrum. (A) Distributions of the maximal Xcorr scores produced by searching
two different spectra against 100 candidate peptides from 1000 randomly shuffled decoy databases. (B) Distributions of the maximal
Xcorr scores produced by searching a single spectrum against 100 (green) or 10 (magenta) candidate peptides from 1000 randomly
shuffled decoy databases. The histograms are normalized so that the area under them is equal to one.
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scoring matches that are neither completely correct nor
completely incorrect (Figure 2).

The Weibull distribution has the advantage of being easy to
fit to truncated data where one is only interested in modeling
the behavior of the most extreme high-scoring region of the
distribution. This distribution has an additional advantage in
that it has a closed form CDF and thus can be readily used to
calculate p values without resorting to precomputed tables.

In the case of Sp and Xcorr, we found the Weibull fit yielded
uniform p values when the underlying distributions were
truncated to include only a fraction of the top scoring PSMs
(Figure 3B). We describe the method for selecting what fraction
of the tail to fit for the two scores in section 3.3 and Figure 8.
Once the distribution is fit, a p value for a particular score X
can be readily calculated using the Weibull CDF, where p(x) )
1 - F(x; �, η, µ) ) e-[(x-µ)/η]�

. Spectra with fewer than 20 peptides
in their mass window did not produce reasonable fits, so we
do not attempt to fit score distributions for these spectra. These
spectra are rare under realistic search conditions (Figure 4).

1.1.2. Extreme Value Distribution Correction. The p value
calculated in section 1.1.1 is for a particular score taken from the
score distribution from a single search (the distribution shown in
Figure 3 and distribution (1) from the Introduction). But we want
a p value for the maximum score taken from this distribution (the
distribution shown in Figure 1 and distribution (2) from the
Introduction). In other words, if we sample n times from a
particular score distribution (corresponding to searching a spec-
trum against n peptides), we need to compute the probability that
the maximum value among these n scores is greater than or equal
to S. These maximum scores should follow an extreme value
distribution (EVD), regardless of the distribution of the underlying
scoring function. We can calculate *the form of this EVD using
the Weibull distribution from section 1.1.1.

This idea is expressed below in more concrete terms.
X1, X2,..., Xn are n independent and identically distributed
continuous random variables drawn from a (known) probability
density function f, with a corresponding cumulative distribution
function F. Define

We would like to calculate a p value for any particular value of
X* ) x, assuming a fixed value of n. For this, we need to know

Figure 2. Distribution of edit distances between the top ranked
peptide and the second (magenta) and 500th (green) ranked
peptides There is little difference in the distributions, except for
a small fraction of second ranked peptides of edit distance less
than four (0.8%), of which a third are identical if leucine and
isoleucine are treated as identical (41/153).

X ∗ ) max{X1, X2, · · · , Xn}

Figure 3. Weibull fits. The figure plots, for the same spectrum,
a fit to the Xcorr score distribution for candidate peptides from
a single search against a shuffled yeast protein sequence
database using (A) all peptides from the distribution or (B) the
top 0.55 fraction of peptides. The poor fit to the full distribution
is improved when only the tail is fit. Also shown is a deeper
(approximately 30-fold larger) sampling of the distribution
(C).
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the cumulative distribution function for X*, F*. We exploit the
known cumulative distribution F to get the probability that any
single Xi is less than x. The desired cumulative density is then

The corresponding p value is just 1 - F(x)n. If F(x) is close to
1, then we can approximate the above equation as follows.
Defining p(x) ) 1 - F(x), and exploiting the rule (1 - x)n ≈
1 - nx, we get

The last step above substitutes the formula for the Weibull p value
given in section 1.1.1. In our experiments, we use either the exact
or approximate formula, depending on the size of p(x).

2. Materials and Methods

Supplementary data is available at http://noble.gs.washing-
ton.edu/proj/msms, and source code and binaries at http://
noble.gs.washington.edu/proj/crux.

2.1. Mass Spectrometry. All tandem mass spectra used in
this paper were generated as described previously17 using a
standard shotgun proteomics LC-MS/MS preparation protocol.
Briefly, a complex yeast lysate was prepared by growing
Saccharomyces cerevisiae strain S288c to an optical density of

1.2. The cells were lysed, centrifugated, and resuspended in
1% PPS (Protein Discovery, Knoxville, TN). The resulting protein
mixture was reduced with dithiothreitol, alkylated with io-
doacetic acid, digested to peptides with trypsin for 4 h,
quenched by acidification with HCl, and finally centrifuged,
with the resulting supernatant stored at -80 °C.

The peptide sample was analyzed by data-dependent tan-
dem mass spectrometry using a 4 µm, 90 Å-pore size Jupiter
Proteo reverse phase material (Phenomenex, Ventura, CA)
packed into a 60 cm column, which was placed inline with an
Agilent 1100 Binary HPLC and Autosampler (Palo Alto, CA).
Peptides were eluted from the microcapillary columns with a
4-h organic gradient, and emitted into an LTQ mass spectrom-
eter (ThermoFisher Scientific, San Jose, CA). Application of
mass spectrometer scan functions and HPLC solvent gradients
were controlled by the Xcalibur data system (ThermoFisher
Scientific). Inorganic buffer was 95% water-5% acetoni-
trile-0.1% formic acid (buffer A), and organic buffer was 5%
water-95% acetonitrile-0.1% formic acid (buffer B). The final
data set contained 18 149 individual tandem mass spectra.

2.2. Database Search. Tandem mass spectra were searched
with the sequence database search algorithm Sequest (v. 27),
InsPecT (v. 20070523) and X!Tandem (v. 2007.07.01.2) as well
as our own in-house software package known as Crux.15 We
have implemented in Crux near-exact replicas of the Sequest
functions Xcorr and Sp. False discovery rates were estimated
by searching against shuffled sequence databases, produced
by taking as input a fasta file and randomly shuffling the
sequences of each protein sequence individually, to maintain
protein length distribution and amino acid composition. All
searches were performed against the yeast protein sequence
database downloaded on November 16, 2006. For all algo-
rithms, we searched tryptic peptides with length between 7 and
50, and mass between 200 and 7200, allowing three charge
states (1, + 2 and + 3) and one missed tryptic cleavage site.

The data for Figure 1 were generated by searching two
spectra (scans 4769 and 14 246 searched as + 3 and + 1,
respectively) against 1000 randomly shuffled databases using

Figure 4. Weibull fit as a function of number of peptides fit. Shown are average correlation values across 1000 spectra (left axis) for the
Weibull fits as a function of the number of fit peptides. Also shown is the distribution of the number of peptides (right axis) in a ( 3.0
m/z window for the same 1000 spectra.

F ∗(x) ) P(X1 e x, X2 e x, · · · , Xn e x)
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Crux and selecting the maximum Xcorr score for each of these
searches. The shuffled databases were generated from 444
randomly selected proteins from the yeast protein sequence
database to decrease analysis time.

3. Results

3.1. Uniformity of p Values. To evaluate our p value
calculation method, we first test that p values for PSMs
generated from the null distribution are uniformly distributed
and therefore valid. We use a collection of 15 149 spectra from
our data set and score each spectrum against a shuffled version
of the yeast protein sequence database using Xcorr and Sp. The
resulting PSMs are, presumably, all incorrect. For each scored
PSM, a p value is calculated as described in section 1.1 for Sp
or Xcorr. These 15 149 p values are then sorted in ascending
order and plotted in a log-log plot against the empirical p value
implied by their position in the sorted list. For perfectly
calculated p values, the first value in a sorted list of 1000 spectra
would be 0.001, the second 0.002, and so on up to 1.000, tracing
a line of y ) x. Deviation from this line indicates deviation from
perfectly calculated p values.

Figure 5 plots our calculated p values as a function of the
empirically determined rank-based p value for Xcorr (panel A)
and Sp (panel B). The plots demonstrate that the calculated p
values are accurate to within a factor of 2.

For comparison, Figure 5C,D show p values computed by
the database search algorithms InsPecT and X!Tandem on the
same data set. The p values for X!Tandem were calculated by
dividing the E-value returned by the number of candidate
peptides in the mass window searched. The p values from these

algorithms are quite far from uniform: the smallest p value
among 15 149 PSMs is 0.13 for InsPecT, which is more than 3
orders of magnitude larger than would be expected from a
uniform model, and 4.0 × 10-6 for X!Tandem, more than an
order of magnitude smaller that would be expected by chance.
In approximately 600 cases, X!Tandem reports E-values that
are larger than the number of peptides in the mass window;
in these cases, we set the p value to 1.

We also show a similar plot but for a single spectrum
searched against multiple (1000) shuffled databases (Figure 6),
with similar results for the four algorithms.

3.2. Discrimination between Correct and Incorrect PSMs.
To test the ability of our p values to discriminate between correct
and incorrect PSMs, we implemented a database search algorithm
that is modeled on Sequest but that incorporates our p value
calculation. We then searched 15 149 spectra in the data set
described in section 2.1 against a target database of the yeast
protein sequence database and a decoy database comprised of
shuffled sequences from the target database.

For each score, we compute a q value, which is defined as
the minimum false discovery rate at which that particular score
is called significant. The underlying FDR estimates are com-
puted by using the decoy score distribution as an approxima-
tion of the null distribution.19 Thus, we rank the target scores
S1,..., Sn and estimate the FDR associated with score Si as In

Figure 5. Calculated p values for null PSMs are uniformly distributed. The figure plots, for each of 15 149 spectra searched against a
shuffled database, the computed p value as a function of the empirical (rank-based) p value, computed using (A) Sp and (B) Xcorr. For
comparison, we show p values from the database search algorithm (C) InsPecT5 and (D) X!Tandem.18 The distribution of p values are
compared against y ) x (solid black line) and y ) (x/2) and y ) 2x (dotted lines).
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addition, for p values calculated using our method, we can
obtain a second FDR estimate using the method of Benjamini
and Hochberg,20 as follows:

where PR is the number of positives at a desired false discovery
rate of R.

We can draw three conclusions from Figure 7. First, the close
correspondence between the lines for the Sequest and Crux
implementations of Xcorr and Sp suggest that our reimple-
mentation of these scores is accurate. Second, the relative
improvement when we switch from raw scores to p values
shows the value of calibrating our scores on a per-spectrum
basis. For example, at a q value threshold of 0.05, our p value
calculation increases the number of identified PSMs for Xcorr
and Sp by 31% and 112%, respectively. Finally, the relatively
close correspondence between the two q value estimates with
and without using the decoy database show that the extra step
of searching a shuffled database to estimate false discovery rate
can be eliminated, allowing a 2-fold speed improvement. Note
that, although these two curves disagree slightly with one
another, it is not obvious which is correct, because the decoy
database may not be a perfect model of the null hypothesis.

3.3. Selection of Fraction of Distribution Tail to Fit. In
section 1.1.1, we described how we calculate p values from the
tail of the score distribution. Here, we describe our exact method
for selecting how much of the tail to fit. We enumerated all

distribution fractions between 0.1 and 1.0, incremented by 0.1,
and we evaluated each fraction using two figures of merit. The
first is the slope of the QQ plot shown in Figure 5; the closer the
p value slope error is to unity, the more uniform the calculated p
values are, and the better our fraction of fit peptides is considered
to be.21 The second is the number of positive PSMs at 5% false
discovery rate; for this figure of merit, higher is better. We selected
the best fraction separately for Sp and Xcorr using 1000 held out
spectra (Figure 8), and validated this selection on two other held
out sets of 1000 spectra (see Supporting Information). The held-
out data sets were not used in subsequent analyses. We visually
inspected the plots and selected tail fractions of 0.40 and 0.55,
for Sp and Xcorr, respectively.

4. Discussion

We have demonstrated that accurate p values can be
computed for the Sequest PSM score functions Xcorr and Sp
by fitting a Weibull distribution to the observed score distribu-
tion on a spectrum-specific basis. By correcting for spectrum-
dependent properties of these score functions, and by correct-
ing for the number of candidate peptides within a given m/z
window, our method significantly improves the discriminative
power of the overall algorithm. Furthermore, by producing valid
p values, the method eliminates the need to search each
spectrum against a decoy database, thereby decreasing the
overall running time by a factor of 2 when the target and decoy
databases are of equal size.

In practice, database search procedures are often followed
by a postprocessing procedure that ranks PSMs using additional

Figure 6. Calculated p values for null PSMs are uniformly distributed. The figure plots, for a single spectrum searched against 1000
shuffled databases, the computed p value as a function of the empirical (rank-based) p value, computed using (A) Sp and (B) Xcorr.
Again, for comparison, we show p values from the database search algorithm (C) InsPecT5 and (D) X!Tandem.18

PR ) max{j:pj e
j

m
R} (2)
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information. For example, PeptideProphet4 and Percolotor22

make use of multiple score functions (Xcorr, Sp and ∆Cn), the
difference between the observed and theoretical precursor
mass, the assumed charge state, the length and number of
tryptic termini of the peptide, as well as features of the entire
collection of PSMs such as the number of times that the given
peptide was observed. Not surprisingly, incorporating this
additional information yields larger improvements in the overall
number of PSMs at a fixed FDR than is offered by the p value

computation procedures that we describe, which are only based
on a single score. For example, for the data set shown in Figure
7, the p value calculation increases the number of positive PSMs
at a 5% false discovery rate by 31% from 3963 to 5182, whereas
PeptideProphet applied to the same data set yields an im-
provement of 109% (8297 PSMs). Therefore, a clear direction
for future work is the incorporaton of our statistically calibrated
scores into a postprocessing procedure such as PeptideProphet
or Percolator. It is likely that the improvements offered by the

Figure 7. Discrimination between correct and incorrect PSMs for p values and their underlying score functions. The top two panels
plot, for two different score functions (Sequest Sp (A) and Xcorr (B)), the number of positive peptide identifications as a function of q
value (a measure of false discovery rate) before and after the p value calculation (dashed gray and yellow, and solid green lines,
respectively). Also shown is the Benjamini-Hochberg false discovery rate estimate calculated without a shuffled database (dashed
magenta line). Panels (C) and (D) explicitly compare the estimated q values computed using our protocol and using a decoy database.
Each point in the figure corresponds to a fixed number of positive PSMs.

Figure 8. Evaluation of different fractions of the distribution tail to fit. Varying the portion of the peptide score distribution tail to fit
affects the number of positive peptides at a 5% FDR (green lines) and the slope of the QQ plot (dashed magenta lines) for Sp (A) and
Xcorr (B). A perfect QQ plot has a slope of 1.0 (horizontal black lines). After visual inspection, we selected a fraction of 0.40 for Sp and
0.55 for Xcorr (vertical black lines).
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two types of methods would be complementary: the statistical
calibration procedure takes into account properties of the
spectrum-specific score distribution, whereas, with the excep-
tion of the ∆Cn score, this type of distributional information
is not used by PeptideProphet or Percolator.

The general calibration approach that we employ here has been
used successfully in other areas of bioinformatics, most notably
in sequence analysis. Some pairwise sequence comparison algo-
rithms23 and hidden Markov model-based scoring systems24,25

estimate p values by fitting extreme value distributions to ob-
served score distributions. In this work, we found it necessary to
switch from the extreme value distribution to the more general
Weibull distribution. In addition, the mass spectrometry setting
of this problem is more complex than the sequence analysis
setting, because we must separately consider the distribution of
candidate peptide scores for a single spectrum and the distribu-
tion of maximal PSM scores across multiple spectra.

We chose to compute p values from Xcorr and Sp because
of the popularity and good performance of the Sequest
algorithm. Generalizing this work to other scoring functions
may or may not be straightforward, depending upon whether
a good parametric approximation can be found for the empiri-
cal score distribution. In searching for such a distribution, the
Weibull distribution is a good place to start, both because of
the logistical considerations mentioned in section 1.1.1, and
because the shape parameter of the Weibull allows it to fit
many empirical distributions well.

There is some evidence that the empirical score distributions
are not perfectly Weibull. As illustrated in Figure 8, we achieve
the most accurate p values and the best discrimination,
respectively, by fitting different fractions of the tail of the
empirical distribution. This observation implies that the results
reported here could be improved even further if we could
achieve a better fit to the observed score distributions.

Our procedure requires setting one hyperparameter, which is
the fraction of the empirical distribution to which the Weibull is
fit. We have shown in Figure 8 how to set this parameter using
held-out data. In other tests, this parameter setting generalizes
well (see Supporting Information), indicating that it will not
usually be necessary to redo this parameter selection procedure.

The most fruitful extensions to this work would probably
involve refining our estimates of false discovery rate. We use
the method of Benjamini and Hochberg20 to calculate FDRs
from our p values; there are, however, other more accurate
methods that take into account the fraction of target PSMs that
are incorrect.3,19 These methods would likely push the number
of positives at fixed FDR even higher. Also, while our method
of fitting the Weibull distribution is quite robust, it does fail
on spectra with very few (less than 20) peptides. This problem
could be addressed by generating additional decoy peptides
on the fly if the candidate database contains too few peptides
to properly fit the distribution.

Abbreviations: LC-MS/MS, liquid chromatography tandem
mass spectrometry; PSM, peptide-spectrum match.
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