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ABSTRACT
Motivation: Tandem mass spectrometry (MS/MS) is an
indispensable technology for identification of proteins from
complex mixtures. Proteins are digested to peptides that are then
identified by their fragmentation patterns in the mass spectrometer.
Thus, at its core, MS/MS protein identification relies on the relative
predictability of peptide fragmentation. Unfortunately, peptide
fragmentation is complex and not fully understood, and what
is understood is not always exploited by peptide identification
algorithms.
Results: We use a hybrid dynamic Bayesian network (DBN)/support
vector machine (SVM) approach to address these two problems.
We train a set of DBNs on high-confidence peptide-spectrum
matches. These DBNs, known collectively as Riptide, comprise a
probabilistic model of peptide fragmentation chemistry. Examination
of the distributions learned by Riptide allows identification of new
trends, such as prevalent a-ion fragmentation at peptide cleavage
sites C-term to hydrophobic residues. In addition, Riptide can
be used to produce likelihood scores that indicate whether a
given peptide-spectrum match is correct. A vector of such scores
is evaluated by an SVM, which produces a final score to be
used in peptide identification. Using Riptide in this way yields
improved discrimination when compared to other state-of-the-art
MS/MS identification algorithms, increasing the number of positive
identifications by as much as 12% at a 1% false discovery rate.
Availability: Python and C source code are available upon request
from the authors. The curated training sets are available at http://
noble.gs.washington.edu/proj/intense/. The Graphical Model Tool Kit
(GMTK) is freely available at http://ssli.ee.washington.edu/bilmes/
gmtk.
Contact: noble@gs.washington.edu

1 INTRODUCTION
A major goal in biology is the identification and characterization of
the cell’s entire protein complement, or proteome. Toward this end,
tandem mass spectrometry (MS/MS)-based technologies offer the
ability to rapidly identify proteins in complex mixtures (Mann et al.,
2001; Yates, 1998). An essential step in MS/MS is the fragmentation
of a protonated peptide and detection of the resulting fragment ions
in the form of a mass spectrum. Due to the complex chemistry of
peptide fragmentation, the pattern of peaks in such a spectrum can
be predicted only qualitatively: an exact prediction of spectrum peak
heights, or even which peaks will be present or absent, has proven
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elusive (Dancik et al., 1999; Elias et al., 2004; Wan and Chen, 2005;
Zhang, 2004).

One motivation for modeling peptide fragmentation is to aid in the
assignment of peptide sequences to observed fragmentation spectra.
However, because of the complexity of peptide fragmentation,
designers of peptide spectrum identification software have often
relied heavily on expert knowledge to design simple heuristics (Eng
et al., 1994; Field et al., 2002) or to set probabilities within a
larger model (Bafna and Edwards, 2001). Only recently models
trained on actual mass spectrometry data have been pursued (Dancik
et al., 1999; Elias et al., 2004; Havilio et al., 2003; Wan and Chen,
2005). These peptide identification methods typically use relatively
simple models that leave out large portions of known fragmentation
pathways, such as neutral losses (Elias et al., 2004; Wan and Chen,
2005), or incorporate most of the known fragmentation pathways in
a black box model that is not easily interpreted or extended (Zhang,
2004).

The method presented here builds upon and extends this previous
work in an effort to address the limitations of existing fragmentation
models and search methods. We test two closely related hypotheses:
the first is that an improved model of peptide mass spectrum peak
intensity, trained on actual MS/MS data, will provide insight into the
complex chemistry of protonated peptide fragmentation; the second
is that such a model will be useful for improving identification of
unknown peptide fragmentation spectra, especially in conjunction
with a sequence database search. We address these hypotheses using
a machine learning tool known as the dynamic Bayesian network
(DBN).

A Bayesian network is a type of graphical model (Lauritzen,
1996), a mathematical tool in which a graph is used to express
important factorization properties about families of probability
distributions. These properties allow computationally efficient
dynamic programming algorithms to carry out important tasks
such as parameter estimation and pattern recognition. Without
the expression of factorization, such algorithms would be
intractable. Bayesian networks also provide a visual, intuitive, yet
mathematically formal graphical description of such probabilistic
models, something that can be of enormous assistance when
designing a model to solve a given problem.

A DBN is a type of Bayesian network (Heckerman, 1995) that
is ideally suited to sequential data, such as acoustic speech signals
in speech recognition or DNA and protein sequences in biological
sequence analysis. Because DBNs subsume hidden Markov models
(HMMs), and because HMMs have been widely and successfully
used in a variety of sequence analysis tasks, it is likely that the much
more powerful family of DBNs may further advance the field of
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bioinformatics. A DBN is constructed using a fixed-length template
which is unrolled in order to model a sequence of any arbitrary
length. The fact that the DBN is described using only a finite number
of parameters, but can describe a sequence of unbounded length,
is one of the powerful aspects of DBNs. A detailed description
of the types of DBNs used in this work, but for the problem
domain of speech recognition, can be found in (Bilmes and Bartels,
2005). Because of their ability to model large complex phenomena,
DBNs are particularly appropriate for modeling peptide fragment ion
intensity. In addition, the DBN’s governing parameters (which are
automatically learned in this work) are highly interpretable, making
them well-suited to provide scientific insight.

Our fragmentation model, called Riptide, consists of a collection
of DBNs that capture physical properties of peptide fragmentation.
Riptide’s design is motivated by the widely accepted mobile proton
model of peptide fragmentation (Dongre et al., 1996; Wysocki et al.,
2000). According to this model, peptide fragmentation by collision-
induced dissociation under low-energy conditions is caused by
migration of a proton to a location on the peptide backbone and
subsequent fragmentation of the peptide into b- and y-ions. This
fragmentation event can be influenced by numerous factors (Dongre
et al., 1996). The most closely studied factor influencing cleavage
is the effect of adjacent amino acid residues on the probability
of cleavage occurring at a particular backbone amide bond. This
effect is modeled in detail in the Riptide DBNs. In addition, the
primary fragmentation event into b- and y-ions (corresponding to
sequences N-term and C-term to the fragmentation position) is
often accompanied by a number of additional fragmentation events:
the formation of an a-ion by a loss of carbon monoxide from the
b-ion; the loss of NH3 or H2O (Kinter and Sherman, 2000). Riptide
explicitly models these ion formations, both alone and jointly with
their precursor ions. This feature is missing in other machine learning
approaches, which only model b- and y-ions (Elias et al., 2004; Wan
and Chen, 2005).

Riptide’s probabilistic parameters are trained from previously
identified tandem mass spectra. In order to avoid contamination
of the training set with incorrectly identified spectra, we
generated high-confidence identifications using a combination of
seven peptide-identification algorithms, paying special attention
to controlling false discoveries. The resulting collection of
1208 peptide-spectrum matches (PSMs) is freely available at
http://noble.gs.washington.edu/proj/intense.

The Riptide model detects both known and potentially novel
trends in peptide fragment intensity within these high-quality PSMs.
Of these trends, perhaps the most provocative is the tendency
towards higher intensity a-ion peaks and a-ion neutral loss peaks
from cleavage sites C-term to hydrophobic residues. In addition to
providing scientific insight into peptide fragmentation chemistry, the
probabilities assigned by the Riptide models are useful for improving
peptide identification. We demonstrate that, when feature vectors
comprised of Riptide probabilities are used as input to either an SVM
or the semi-supervised learning algorithm Percolator, they improve
peptide identification at a 1% false discovery rate (FDR) by 10.9
and 12.4%, respectively.

2 APPROACH
Although the details of the Riptide model are complex, the inputs
to and outputs from the Riptide training and testing procedure are

Fig. 1. Experimental overview. We start with a collection of high-confidence
PSMs. These training PSMs are used to train the Riptide model, which
consists of a collection of DBNs that model the probability distributions
governing peptide fragment ion intensities. Riptide is used to evaluate testing
PSMs to produce a vector of features for each PSM, each feature related to a
probability assigned to the PSM by one of the Riptide DBNs. Finally, these
feature vectors can be analyzed by additional algorithms (such as SVMs) to
produce scores for the test PSMs.

quite simple (Fig. 1). We start with a collection of high-confidence
PSMs generated as described in Section 3.2. These PSMs are used to
train the Riptide model, which consists of a collection of DBNs that
model the probability distributions governing peptide fragment ion
intensities. The resulting Riptide model is then evaluated on a set of
test PSMs, generating for each PSM a feature vector of probabilities.
These vectors can then be used as input to analysis software,
assigning scores to the PSMs. Examples of analysis software include
support vector machines (SVMs) or the semi-supervised learning
algorithm Percolator of Käll et al. (2007) (Section 4).

2.1 Riptide training
Training the Riptide model proceeds in two main steps, portrayed
in Figure 2. The first step starts with the high-confidence PSMs,
produced as described in Section 3.2. Each of the spectra for these
positive PSMs is also associated with a randomly generated peptide
to create a set of negative PSMs. We use these two classes of PSMs
(positive and negative) to train a set of ‘positive’ and ‘negative’
dynamic Bayesian networks (Fig. 2A). These trained DBNs are then
used to evaluate the test PSMs, yielding for each PSM and each type
of DBN a pair of probabilities (positive and negative). In addition to
the raw probabilities, we also include the ratio between them, which
we found helped in discrimination (Section 2.3). Thus, each of the
original training PSMs is represented as a length three vector, with
three scalar values for each kind of DBN in the original Riptide
training (Fig. 2B, right). These vectors can then be used during
testing as input to either an SVM or the Percolator (Section 4).

2.2 Bayesian networks
At the core of the Riptide algorithm are two types of DBNs
that model the probability distributions governing spectrum ion
intensities. One section of a DBN template is called a frame.
Three frames for each model are shown in Figure 3 using standard
DBN diagramming semantics. Nodes in the model represent random
variables, solid edges signify potential dependencies between these
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(A) (B)

Fig. 2. Riptide overview. The process of training and evaluating Riptide consists of two main stages. (A) The process begins with high-confidence PSMs
(positive PSMs, top). Each of the spectra for these positive PSMs is also associated with a randomly generated peptide to create a set of negative PSMs
(bottom). These two classes of PSMs are used to train a set of DBNs, one positive and one negative for each ion series. (B) The trained DBNs are then used
to evaluate testing PSMs, yielding for each PSM and each type of DBN a pair of probabilities (positive and negative) as well as the ratio between them, a log
odds ratio. Thus, each of the testing PSMs is represented as a vector of scalar values, three values for each DBN. These vectors are then used during testing
as input to either an SVM or the Percolator algorithm (Section 4).

variables, and dashed edges signify switching edges (Bilmes and
Bartels, 2005).

The first network type is the single-ion model, which captures
information about the influence of peptide chemistry on individual
ion series (Fig. 3A). Intuitively, this model learns probability
relationships that can be expressed as ‘b-ions N-term to proline
tend to have high intensity’ or ‘y-ions C-term to aspartate have low
intensity’. The second type of network is the paired-ion model,
which captures information about relationships between pairs of
ions of related types (Fig. 3B). These models learn probability
relationships that can be expressed as ‘b- and y-ions that result
from the same cleavage location tend to have intensities of similar
height.’ Taken together, these two kinds of models are capable of
capturing a rich set of probabilistic relationships governing fragment
ion intensities. We train specific instances of each model type for
different ion series and pairs of ion series. For example, Riptide
contains a single-ion model trained on b-ions alone, and a paired-
ion model trained on b- and y-ions jointly. Additional details about
each of these model types are given subsequently.

2.2.1 Single ion models A graphical representation of the single-
ion model is shown in Figure 3A. It models the relationship
between a spectrum and a particular series of fragment ions
from an associated peptide. Each frame corresponds to a single
fragmentation location in the peptide and the intensity of a peak in
the mass spectrum associated with that fragmentation. For example,
a model of the b-ions resulting from the peptide EAMPK would
contain four frames, with the first frame corresponding to the b-ion
resulting from fragmentation at the amide bond between the peptide
fragments E and AMPK.

For a given set of training PSMs, one single-ion model is trained
for each of the 18 different ion series. These include nine singly
charged and nine doubly charged ion series, the latter denoted with
a ‘++’. For each charge state, we model three primary ion series (b,
y and a), each of these primary series with a loss of water (denoted
b◦, y◦ and a◦) and a loss of ammonia (denoted b∗, y∗ and a∗).
Because we train a separate model on negative and positive sets of

PSMs, this procedure results in 36 single-ion models (3 ion types ×
3 loss types × 2 charge-states × 2 training sets).

At the center of each frame of the single-ion model is a random
variable that represents ion intensity as the percentile rank of the
observed peak in the mass spectrum using a number between
0 and 1, derived as described in Section 3.1. We model this
variable using a mixture of three Gaussians, for a total of eight free
parameters (three means, three variances and two weights). Three
Gaussians were found to match natural ion intensity distributions
well: most distributions have a single large peak, tapering into a
broad background distribution modeled by the other two Gaussians.

The intensity variable is dependent on several other variables,
which can be divided into two groups. The first group consists of
two variables that influence the probability of a peak being detected
in the spectrum. As physical instruments, mass spectrometers are
only capable of detecting ions within a finite range of m/z values.
Thus, the first variable indicates whether the particular peak is
within the detectable portion of the mass spectrum, while the second
indicates whether a peak is indeed detected. We do not wish to
assign low probability to a peptide with an undetected ion if that ion
is physically undetectable; hence, when both of these variables are
false, we set the center intensity variable to unity. On the other hand,
if an ion is detectable but not detected, then we penalize it during
testing by using the (usually low) probability for a zero intensity
ion. Finally, if an ion is both detectable and detected, then we use
the corresponding intensity value to train (or test) the appropriate
one-dimensional three-component Gaussian mixture at the center
intensity node.

The second group of three variables influence the intensity of the
fragment ion assuming that it is detected. Two variables represent
the flanking amino acids immediately to the left (N-term) and
right (C-term) of the fragmentation position in the peptide. These
positions have been shown to have a strong effect on the probability
of detecting an ion resulting from the cleavage position at that
position (Tabb et al., 2004; Wysocki et al., 2000). The third variable
represents the position of the peak along the m/z axis of the spectrum
relative to the intact peptide m/z (using an integer between 0 and 4).
This variable accounts for the bias towards center fragmentation

i350

 by on M
ay 24, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org


[21:39 18/6/03 Bioinformatics-btn189.tex] Page: i351 i348–i356

Modeling peptide fragmentation

(A) (B)

Fig. 3. The two types of Riptide DBNs. The first class of DBNs (A) models distributions of ion fragment intensities individually, conditioning on the amino
acids flanking the cleavage site that fragments to produce that particular ion. The second class of DBNs (B) models the distributions of ion fragment intensities
in pairs, incorporating dependencies between related ions that result from fragmentation at the same site. Observed nodes are shaded gray; hidden nodes are
not shaded. The nodes at the top of each center frame are connected to identical nodes in previous and subsequent frames. Solid lines indicate conditional
dependencies, while dashed lines indicate a switching parent relationship, a special form of conditional dependency.

in peptides. These three variables are mixed together using a hidden
mixing variable, the distribution of which depends on the region of
the mass spectrum. The mixing procedure allows what would be a
very high number of training parameters (20 left-flanking residues
× 20 right flanking residues × 5 peptide regions × 8 Gaussian
parameters =16000) to a much smaller number ( (20+20+5)∗8=
360), using the switching parent mechanism. Thus, the mixing node
allows us to train a much richer model on much fewer data than
would otherwise be possible. An edge connects the peptide region to
this mixing node because intensities from fragmentations in different
regions of the peptide will have slightly different dependencies on
flanking residues and peptide position. For example, the extreme
C-term and N-term regions of the peptide will tend to have low
intensities regardless of flanking residues (Havilio et al., 2003),
whereas towards the center of the peptide differences in intensity
are more influenced by flanking residues.

2.2.2 Paired-ion models A graphical representation of the paired-
ion model type is shown in Figure 3B. This type of model attempts to
capture the pairwise relationships between related ions of different
types. Some pairs of ion types are closely related because they result
from the same fragmentation event (e.g. bi and yn−i, for a peptide
of length n). This is because under low-energy conditions, the b-ion
and y-ion fragments co-exist in a loose complex; the two members
of this dimer compete for the proton, with assignment of charge
being determined by the proton affinities of the two ions (Paizs and
Suhai, 2004). Fragment cannot be detected if they are not charged,

so this competition matters for the detected ion intensities. Other
pairs of ion types are related because one type can produce the other
upon secondary fragmentation (b and b◦). Still others are related
because they represent different charge states of the same ion (b and
b++). Thus, we train paired-ion models for each of the following
15 pairs of related ions: b/y, b/b◦, y/y◦, b/a, b/b∗, y/y∗, b/b++,
y/y++, b◦/b◦++, y◦/y◦++, a/a++, b∗/b∗++, y∗/y∗++, y/a and
b++/y++. For clarity, Figure 3 shows the model for b- and y-ions
only; other pairs of ions are modeled analogously. As for the single-
ion models, one model is trained on each ion series for a positive
and negative set of training PSMs (Fig. 2), producing 30 trained
models. Like the single-ion models, each frame in a paired-ion
model corresponds to a single fragmentation location in a peptide
and models the intensities of a pair of peaks in a mass spectrum
associated with that fragmentation. For example, the first frame of
a model of the +1 b- and y-ions resulting of the peptide EAMPK
would model the b-ion E and the y-ion AMPK.

The three variables along the bottom of Figure 2 represent peak
intensity. Two of these variables model the intensities of the ions
individually and are essentially identical to the intensity variable
described above for the single-ion models. These variables also use
a mixture of three 1D Gaussians and are used if only one or the
other ion is detected but not both. On the other hand, if both ions
are detected, then the center variable models the ions jointly using
a mixture of nine 2D Gaussians. Regardless of which pattern of
ions is detected, the distribution corresponding to the undetected
pattern of ions is given a unity score. Whether ions are detected or
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not is indicated using the three variables directly above each of the
intensity variables. Finally, the three variables indicating whether
ions are detected or not are dependent on the peptide region, which
is identical to the corresponding node in the single ion models. The
dependence of these three variables on peptide region captures the
fact that some pairs of ion types (b and y) from the center of a peptide
are more likely to be observed simultaneously in the spectrum.

2.3 Using Riptide to evaluate PSMs
The final Riptide model consists of 66 dynamic Bayesian networks,
including a positive and negative model for each of 18 single-ion
series and 15 pairs of ion series ((18 + 15) * 2 = 66). Once these
networks have been trained, they can be used to assign a probability
to the ion series from any given PSM. Evaluating a PSM using one
of the models described above yields the joint probability of the
observed values for a particular ion series intensity pattern i and
peptide p given the trained model M, Pr(i,p|M). Each ion series
has two probabilities assigned to it: one for the model trained with
positive PSMs, and one for the model trained with negative PSMs.
We use these two probabilities to calculate a log odds ratio for each
ion series and PSM. Hence, the final measure of how well a given
PSM ion series and for a particular peptide matches expectation is
given by

LOR(i,p) = log
(

Pr(i,p|M+)
Pr(i,p|M−)

)
, (1)

where M+ and M− are the positive and negative models,
respectively. Evaluating the log odds ratios for each of the 33 positive
and 33 negative models yields a vector of an additional 33 values
for each PSM. Thus, the final vector summarizing each PSM is
99 elements long. We use these vectors as input to other algorithms
such as SVMs, described in more detail in Section 4.

3 METHODS

3.1 Spectrum preprocessing
Before any particular spectrum is analyzed, we transform the intensities by
sorting the peaks in ascending order by intensity and calculating, for that
peak, the fraction of peaks that are less than or equal to that intensity. We
use these fractional representations of peak intensities to train the Riptide
dynamic Bayesian networks. Thus, in a hypothetical spectrum with 10 peaks,
the peak with the highest intensity would be assigned a normalized rank of
1.00, and the peak with the lowest intensity would be assigned a normalized
rank of 0.10. This intensity transformation is similar to the relative rank
value used in (Wan and Chen, 2005) and reduces the effect of variations in
dynamic range and noise.

3.2 Training dataset
To generate the MS/MS data, an aqueous soluble protein sample from
Escherichia coli lysate was reduced, carbamidomethylated and digested with
trypsin in the presence of an acid-labile detergent (RapiGest, Waters Corp.,
Milford, MA). The resulting peptides were analyzed by µLC–MS/MS using
the multi-dimensional protein identification technology (Washburn et al.,
2001) on a ThermoFinnigan Orbitrap LTQ mass spectrometer, yielding a
total of 112 329 spectra.

We wanted to avoid learning spurious relationships from PSMs with
MS/MS spectra that contained heterogeneous populations of peptides. To
select spectra from homogeneous populations of peptides, we used the
isotope detection algorithm HardKlör (Hoopmann et al., 2007). We included
MS/MS spectra that had an associated MS spectrum with only one isotope

distribution within a window of 3 m/z of the precursor ion over three out of
four MS spectra, yielding a total of 51179 MS/MS spectra.

The spectra were searched against the E.coli protein sequence database
using several algorithms to mitigate the bias resulting from any one
algorithm or algorithm class: Sequest (Eng et al., 1994; Yates et al., 1995),
OMMSA (Geer et al., 2004), ProbID (Zhang et al., 2002), PepNovo (Frank
and Pevzner, 2005), Lutefisk (Taylor and Johnson, 1997), Inspect (Tanner
et al., 2005) and GutenTag (Tabb et al., 2003). These algorithms were
chosen to represent the diversity of existing MS/MS analysis software and
according to source code and executable availability. Parameters for each
algorithm were set as appropriate to search all peptides (regardless of enzyme
specificity) with a precursor mass tolerance of +/−2.5 Da. PSMs from each
algorithm were accepted if they met the following criteria: a minimum length
of six amino acids, a charge of +2, fully tryptic (ending in K or R) with no
missed cleavages. The algorithms GutenTag and Sequest had additional
filters of a minimum DeltCN of 0.20 and 0.10, respectively. Many of the
algorithms return multiple PSMs for a particular spectrum; in these cases,
the top PSM (according to the primary scoring method for that algorithm)
that matched the above criteria was selected as the PSM for that algorithm
and spectrum. The FDR for each algorithm was estimated by searching
the spectra against a randomly shuffled sequence database, consisting of
randomly generated proteins with the same amino acid frequencies and
length distribution as the original sequence database. PSMs are sorted by the
primary scoring metric, and the FDR at a given primary scoring threshold
is equal to the number of identifications to the shuffled database divided by
the number of identifications to the real database above that threshold. The
handful of short peptides that occurred in both the real and shuffled sequence
databases were ignored for the purpose of calculating FDR. Thresholds for
accepting PSMs generated by each algorithm were set consistent with an
FDR of 1%.

In some cases, the PSMs contain contradictory assignments of different
peptides by different algorithms to the same spectrum. We remove these
contradictory PSMs from the set. Finally, we require each PSM to be
confirmed by at least two algorithms, and each peptide to be confirmed by
at least two spectra. The resulting 1208 charge +2 PSMs were used to train
Riptide.

3.3 Testing datasets
For validation, we use a publicly available tandem MS dataset
from Klammer et al. (2007), available as the 60cm dataset at
http://noble.gs.washington.edu/proj/retention/data/data.html. The dataset
consists of a collection of 18149 spectra derived from a yeast whole-cell
lysate as described previously (Klammer et al., 2007). This data set was used
to demonstrate the model’s ability to generalize across different peptide sets.

The yeast protein sequence database used to search the test dataset was
first digested to tryptic peptides in silico, by cleaving protein sequences after
K or R except when followed by P, and allowing internal missed cleavages.
The resulting peptides are then indexed by their mass in Daltons (Da) rounded
to the nearest integer. For each test spectrum, we created a list of candidate
peptides by rounding the spectrum’s mass in Da (assuming charge of +2)
to the nearest integer, and extracting all peptides within +/−3 Da of the
rounded mass. For a sequence database of sufficient size, this list of candidate
peptides will be prohibitively large; hence, to winnow this list further, we
apply a subsequent filtering step akin to the Sequest Sp score (Eng et al.,
1994).

3.4 SVM training
For the SVM, we use a Gaussian kernel, and hyperparameters C and σ .
C is the soft-margin penalty, or the penalty for misclassified examples, and
σ is the width of the Gaussian used. These hyperparameters are selected
using 5-fold nested cross-validation, where the parameter with the largest
area under the receiver operating characteristic (ROC) curve is selected. The
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(A) (B)

q-value q-value

Fig. 4. Positive peptide identifications as a function of q -value (a measure of FDR). The Riptide scoring function is compared with the Sequest scoring
function Xcorr, to test the utility of the SVM normalized discriminant score function (A). In addition, the Riptide DBN feature vectors are used as input to
the algorithm Percolator (Käll et al., 2007), and are compared with the original Percolator features (B).

SVM was implemented using the publicly available software package PyML
http://pyml.sourceforge.net).

4 RESULTS

4.1 Validation with a sequence database search
We test Riptide in the context of a three-stage computational
pipeline, in which (1) candidate PSMs are generated by a
reimplementation of Sequest. (C.Y.Park et al., In Press); (2) these
PSMs areevaluated by Riptide, and (3) the resulting feature vectors
are post-processed either by an SVM or by the semi-supervised
learning algorithm known as Percolator (Käll et al., 2007). We
train Riptide and the SVM using target and decoy PSMs from
E.coli (Section 3.2), and we then measure the ability of the pipeline
to discriminate between target and decoy PSMs, using spectra
generated from a yeast whole-cell lysate (Section 3.3).

An SVM is a binary classifier that projects feature vectors into a
high-dimensional space and learns an optimal separating hyperplane
between positive and negative examples in that space (Section 3.4).
In this case, we use an SVM to learn to discriminate between
positive and negative PSMs, using the 99-dimensional feature
vectors generated by Riptide. After SVM training, test set PSMs are
scored using the discriminant value of the SVM classifier, which
is the distance between the test PSM’s feature vector and the SVM
hyperplane. If the scoring function is working well, then correct
PSMs will be assigned positive discriminant scores, and incorrect
PSMs will be assigned negative scores.

Figure 4A compares the performance of Riptide+SVM with
the performance of XCorr, the score function used by Sequest
[re-implemented in the software package Crux (C.Y.Park et al.,
In Press)]. To generate thefigure, we searched each spectrum in the
test set against a shuffled decoy version of the same protein sequence
database (Klammer et al., 2007). We use the number of matches to
the decoy database at a particular score threshold to estimate the rate
of false identifications among the target PSMs (Käll et al., 2008).
For each PSM, we then compute a q value, which is defined as the
minimal FDR threshold at which the PSM is deemed significant
(Storey and Tibshirani, 2003). Each series in the figure plots the
number of target PSMs identified as a function of q-value threshold.

We selected this mode of evaluation because it closely matches
the goal of the typical mass spectrometrist: identifying the largest
number of peptides with the lowest rate of false identifications.
Riptide with the static SVM outperforms Sequest by 10.8% at a
1% FDR. In this experiment, the Riptide DBNs failed on many
short (length seven or less) peptides, so they are not included in the
analysis. If these peptides are included, performance deteriorates
dramatically.

In addition to testing the static SVM post-processor, we test
Riptide in conjunction with the semi-supervised learning algorithm,
Percolator (Käll et al., 2007). Percolator uses an SVM to iteratively
learn to discriminate between correct and incorrect PSMs by using
PSMs from a decoy dataset as a proxy for incorrect PSMs in the
target dataset. As originally described, Percolator uses a collection
of 20 features, including several features derived from the algorithm
Sequest: e.g. Xcorr, Sp, deltCN as well as features describing the
trypticity of the peptide termini, among others. We tested three
variants of Percolator: using the original 20 features, using Riptide’s
99 features and using all 119 features. The results are shown
in Figure 4B. When Riptide’s feature vectors are combined with
those used in the original Percolator publication, we obtain 12.4%
improvement in positives at 1% false discovery (Fig. 4B).

In Figure 4B, the original features from (Käll et al., 2007)
outperform the Riptide features when both are used alone. This
result is likely due to the use of information in generating
Percolator features unavailable to Riptide, in particular, protein-
level information. Thus, Riptide-derived features will likely
benefit discrimination most when combined with high-level, non-
fragmentation based-information.

4.2 Analysis of learned fragmentation probabilities
An additional benefit of using DBNs in the Riptide model is that
the probability distributions learned by the networks can be readily
interpreted to produce scientific insights. We examine the probability
distributions governing ion fragment intensities learned by the
single-ion and paired-ion types of Riptide models in Figure 6.

In Figure 6A, we examine the distributions of intensities learned
for particular residues and ion types by the single-ion models.
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(A)

(B)

Fig. 6. Learned parameters of the Riptide model. (A) Displays the mean peak intensities for different residues and ion types learned using the Riptide
single-ion models. Each cell shows the mean normalized intensity value for a particular ion series and flanking residue. For the left heat map, residues
designated are those to the left of the amide bond fragmented to produce ions of that type (i.e. the amide bond is itself C-term to the residue), while for the
right heat map, the residues designated are those to the right of the fragmented amide bond (i.e. the amide bond is itself N-term to the residue). The top image
was created using matrix2png (Pavlidis and Noble, 2003). (B) Displays the 2D Gaussian distributions of peak intensities for pairs of ions learned using the
Riptide paired-ion models. Each plot shows the joint distribution of ion intensities resulting from the same amide bond cleavage; thus, for example, points on
the b/y plot corresponds to bi/yn−i pairs, for a peptide of length n. The color bar scale indicates natural log probability.
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Fig. 5. Distribution of a-ion intensities from fragmentation at sites C-term
to hydrophobic or polar residues. Difference is significant at P%0.0001.

Each plot shows the mean intensity for each of the 18 single-
ion models and the 20 residues that can be to the left and right
(N-term and C-term) of the cleaved amide bond. Several expected
trends can be detected: the high intensities of b- and y-ions; the
high intensities of cleavages N-term to P, and corresponding low
intensities of cleavages C-term to P. Other trends that have not
been as widely noted in the peptide fragmentation literature are
also present: the increased prevalence of +2 y-ions when basic
residues are C-term to the fragmentation location; and the increased
intensity of singly charged a-ions when hydrophobic residues are
N-term to the fragmentation site. The first effect makes sense
from physical principles. We examined the latter effect more
closely by looking at the raw distribution of a-ion intensities near
hydrophobic residues. Specifically, we compared a-ion intensities
that resulted from fragmentation events C-term to the hydrophobic
residues YILMFWC (where C is modified with iodoacetamide) with
the polar residues RKDENQ (Fig. 5). The two distributions are
significantly different from one another (Kolmogorov–Smirnov test,
P%0.0001).

In Figure 6B, we examine the 2D distributions learned by the
joint intensity node in the paired-ion models. Here we analyze
how pairs of ion intensities resulting from the same amide bond
cleavage depend on each other. Again, several expected trends can
be detected: prominence of b- and y-ions, with relatively higher
prominence for y-ions (panel b/y); relatively low values for a and
a++ ions, but with preference for a (panel a/a++). Other suggestive
trends can also be found: the apparent correlation between b-ions
and their respective neutral losses (diagonal plumes on the right
of panels b/b◦ and b/b∗); the qualitative difference between plots
showing b-ion neutral losses and their charge +2 species, on the one
hand, and y-ion neutral losses and their charge +2 species, on the
other (b◦/b◦++ and b∗/b∗++ versus. y◦/y◦++ and y∗/y∗++). The
y-ions possess a prominent plume at the top of the plots, showing
increased prevalence of +2 neutral losses at low +1 charge states,
relative to b-ions.

5 DISCUSSION
We have presented Riptide, which models peptide fragmentation
chemistry using a collection of DBNs trained from high-quality
PSMs. Riptide can provide insights into fragmentation biochemistry,
and feature vectors produced by Riptide can be used as input

to further machine learning algorithms to improve peptide
identification.

The Riptide models generalizes well across PSMs from different
organisms: we train our model on PSMs from E.coli and test
on PSMs from the yeast Saccharomyces cerevisiae. This good
generalization is aided by the DBN machinery’s ability to control
model complexity through switching parents, dramatically reducing
the number of trainable parameters. It is unlikely that a model taking
into account, for example, C-term and N-term flanking amino acids
could be trained on a few thousand spectra without some analogous
parameter-reduction machinery.

Of course, Riptide will likely not generalize well across all
types of MS/MS peptide fragmentation data. For example, using
different methods of activating peptide ions, such as electron transfer
dissociation (ETD) (Mikesh et al., 2007) or electron collision
dissociation (ECD) (Zubarev, 2004), would likely require retraining
the model. Furthermore, very long or very short peptides (as noted
in Section 4.1) may also exhibit different chemistries that subvert
the Riptide model. However, one of the benefits of the learning
approach used here is that Riptide is not static and can improve as
data improves and as technology and protocols change. For example,
in this study we focused on fragmentation of tryptic peptides of
charge state +2, because these are the most common peptides in
the samples we analyze with collision induced dissociation. But
different samples generated from different proteases or analyzed
with different fragmentation technologies could be used to train
the Riptide models. A related advantage of the machine learning
approach is that new DBNs can be applied to arbitrary ion
series. In this work, we focused on collision-induced dissociation
fragmentation spectra from +2 peptides. An obvious extension
would be to apply the DBNs to different charge states, such as
+1 and +3 or higher. Also, ETD and ECD have been shown to
be useful in proteomics, but produce prevalent c- and z-ions, rather
than b and y. Given appropriate training data, Riptide could learn
fragmentation patterns from these ion series.

In a sense, the two overall goals of Riptide—learning about
peptide fragmentation biochemistry and improving our ability to
identify spectra—are at odds with respect to each other. This
tension correlates with the observation that, in general, DBNs
admit two different methods of parameter training. On the one
hand, there is generative training, where optimizing the objective
function means that the corresponding joint probability distribution
should best describe the data. As a simple example, given a
DBN representation of the joint distribution of intensity and
peptides Pr(i,p|θ ), where θ are model parameters, generative model
training adjusts θ so that this joint distribution is as accurate
as possible. Discriminative training, on the other hand, adjusts
the parameters of the model so that classification accuracy is
as high as possible. For example, using Bayes rule, we can
form the posterior Pr(p|i,θ )=Pr(i,p|θ )/Pr(i|θ ) and then choose
the p that maximizes this posterior. Adjusting the parameters θ

to minimize the error rate of a so-formed Bayes decision rule
would constitute discriminative training. Generative training is
computationally cheap relative to discriminative training. Therefore,
in this work we have simulated a discriminative training procedure
by explicitly training positive and negative models separately. This
latter choice was also motivated by the desire to obtain interpretable
probabilistic parameters, which a model trained solely on positive
PSMs allows. In future work, we plan to experiment by using a fully
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discriminative Riptide model for peptide identification and using
a separate, fully generative model for investigating fragmentation
phenomena.

Although Riptide is relatively fast in real time (on the order
of a minute per spectrum for the databases considered here), it is
slow compared to other commonly used PSM evaluation metrics,
such as Xcorr. This is tolerable, because there is a long history
in MS/MS analysis software of using fast preliminary scores to
pre-filter peptides before handing them off to the sensitive, yet
expensive, final scoring routines. The running time for Riptide to
score a given spectrum scales approximately as O(lNpNilog(Ns)),
where l is the average length of a peptide, Np is the number of
candidate peptides for that spectrum, Ni is the number of ion series
under consideration, and Ns is the number of peaks in the particular
spectrum.

Currently Riptide is implemented in a combination of C++ and
Python code, using the GMTK package for dynamic Bayesian
network analysis. GMTK is freely available, and the C++ code
is available from the authors upon request. In the near future,
we plan to migrate Riptide to C and integrate the code into the
sequence database search package Crux. (C.Y. Park et al., In Press).
Ultimately, the Crux package will incorporate the probabilities
produced by Riptide for PSMs into probabilities for protein
identification.

ACKNOWLEDGEMENTS
Funding: This work was supported by National Institutes of Health
awards R01 EB007057 and P41 RR11823.

Conflict of Interest: none declared.

REFERENCES
Bafna,V. and Edwards,N. (2001) SCOPE: a probabilistic model for scoring tandem

mass spectra against a peptide database. Bioinformatics, 17, S13–S21.
Bilmes,J. and Bartels,C. (2005) Graphical model architectures for speech recognition.

IEEE Signal Proc. Mag., 22, 89–100.
Dongre,A.R. et al. (1996) Influence of peptide composition, gas-phase basicity, and

chemical modification on fragmentation efficiency: evidence for the mobile proton
model. J. Am. Chem. Soc., 118, 8365–8374.

Dancik,V. et al. (1999) De novo peptide sequencing via tandem mass spectrometry.
J. Comput. Biol., 6, 327–342.

Eng,J.K. et al. (1994) An approach to correlate tandem mass spectral data of peptides
with amino acid sequences in a protein database. J. Am. Soc. Mass Spectr., 5,
976–989.

Elias,J.E. et al. (2004) Intensity-based protein identification by machine learning from
a library of tandem mass spectra. Nature Biotechnology, 22, 214–219.

Field,H.I. et al. (2002) Radars, a bioinformatics solution that automates proteome mass
spectral analysis, optimises protein identification, and archives data in a relational
database. Proteomics, 2, 36–47.

Frank,A. and Pevzner,P. (2005) Pepnovo: de novo peptide sequencing via probabilistic
network modeling. Anal. Chem., 77, 964–973.

Geer,L.Y. et al. (2004) Open mass spectrometry search algorithm. J. Proteome Res., 3,
958–964.

Heckerman,D. (1995) A tutorial on learning with Bayesian Networks. Technical report,
Microsoft Corporation, Redmond.

Havilio,M. et al. (2003) Intensity-based statistical scorer for tandem mass spectrometry.
Anal. Chem., 75, 435–444.

Hoopmann,M.R. et al. (2007) High speed data reduction, feature detection, and MS/MS
spectrum quality assessment of shotgun proteomics datasets using high resolution
mass spectrometry. Anal. Chem., 79, 5620–5632.

Kinter,M. and Sherman,N.E. (2000) Protein sequencing and identification using tandem
mass spectrometry. Wiley-Interscience, New York, NY.

Klammer,A.A. et al. (2007) Improving tandem mass spectrum identification using
peptide retention time prediction across diverse chromatography conditions. Anal.
Chem., 79, 6111–6118.

Käll,L. et al. (2007) A semi-supervised machine learning technique for peptide
identification from shotgun proteomics datasets. Nat. Methods, 4, 923–925.

Käll,L. et al. (2008) Assigning significance to peptides identified by tandem mass
spectrometry using decoy databases. J. Proteome Res., 7, 29–34.

Lauritzen,S. (1996) Graphical Models. Oxford Science Publications, Oxford University
Press, Princeton, NJ.

Mann,M. et al. (2001) Analysis of proteins and proteomes by mass spectrometry. Ann.
Rev. Biochem., 70, 437–473.

Mikesh,L.M. et al. (2007) The utility of ETD mass spectrometry in proteomic analysis.
Biochim. Biophys. Acta., 1764, 1811–1822.

Pavlidis,P. and Noble,W.S. (2003) Matrix2png: a utility for visualizing matrix data.
Bioinformatics, 19, 295–296.

Paizs,B. and Suhai,S. (2004) Fragmentation pathways of protonated peptides. Mass
Spectro. Rev., 24, 508–548.

Park,C.Y. et al. (2008) Rapid and accurate peptide identification from tandem mass
spectra. J. Proteome Res., In Press.

Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genome-wide studies.
Pro. Natl. Acad. Sci.USA, 100, 9440–9445.

Taylor,J.A. and Johnson,R.S. (1997) Sequence database searches via de novo peptide
sequencing by tandem mass spectrometry. Rapid commun. Mass Spectr., 11,
1067–1075.

Tabb,D.L. et al. (2003) Gutentag: high-throughput sequence tagging via an empirically
derived fragmentation model. Anal. Chem., 75, 6415–6421.

Tabb,D.L. et al. (2004) Influence of basic residue content on fragment ion peak
intensities in low-energy collision-induced dissociation spectra of peptides. Anal.
Chem., 76, 1243–48.

Tanner,S. et al. (2005) InsPecT: Identification of posttranslationally modified peptides
from tandem mass spectra. Anal. Chem., 77, 4626–4639.

Wysocki,V.H. et al. (2000) Mobile and localized protons: a framework for understanding
peptide dissociation. J. Am. Soc. Mass Spectr., 35, 1399–1406.

Washburn,M.P. et al. (2001) Large-scale analysis of the yeast proteome
by multidimensional protein identification technology. Nat. Biotechnol., 19,
242–247.

Wan,Y. and Chen,T. (2005) PepHMM: a hidden Markov model based scoring function
for mass spectrometry database search. Anal.l Chem., 78, 432–437.

Yates,III,J.R. et al. (1995) Method to correlate tandem mass spectra of modified peptides
to amino acid sequences in the protein database. Anal. Chem., 67, 1426–1436.

Yates,III,J.R. (1998) Mass spectrometry and the age of the proteome. Anal. Chem., 33,
1–19.

Zhang,N. et al. (2002) ProbID: a probabilistic algorithm to identify peptides through
sequence database searching using tandem mass spectral data. Proteomics, 2,
1406–1412.

Zubarev,R.A. (2004) Electron-capture dissociation tandem mass spectrometry. Curr.
Opin. Biotechnol., 15, 12–16.

Zhang,Z. (2004) Prediction of low-energy collision-induced dissociation spectra of
peptides. Anal. Chem., 76, 3908–3922.

i356

 by on M
ay 24, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org

	Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification
	Aaron A. Klammer, Sheila M. Reynolds, Jeff A. Bilmes, Michael J. MacCoss, William Stafford Noble
	1 Introduction
	2 Approach
	3 Methods
	4 Results
	5 Discussion



