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Abstract. Most tandem mass spectrum identification algorithms use
information only from the final spectrum, ignoring precursor informa-
tion such as peptide retention time (RT). Efforts to exploit peptide RT
for peptide identification can be frustrated by its variability across liquid
chromatography analyses. We show that peptide RT can be reliably pre-
dicted by training a support vector regressor on a single chromatography
run. This dynamically trained model outperforms a published statically
trained model of peptide RT across diverse chromatography conditions.
In addition, the model can be used to filter peptide identifications that
produce large discrepancies between observed and predicted RT. After
filtering, estimated true positive peptide identifications increase by as
much as 50% at a false discovery rate of 3%, with the largest increase
for non-specific cleavage with elastase.

Keywords: Mass spectrometry, proteomics, peptide identification, reten-
tion time, chromatography, machine learning, support vector regression.

1 Introduction

Full understanding of the cell requires accurate measurement and characteriza-
tion of its main biochemical actors, proteins. While much can be learned from
the study of individual proteins, in vivo a protein invariably acts in concert with
other biomolecules. These interactions differ according to cell type, the state of
the cell, and its response to external stimuli. Several technologies have the po-
tential to provide a comprehensive view of many or all of an the cell’s proteins.
One such technology is shotgun proteomics using liquid chromatography and
tandem mass spectrometry (LC-MS/MS)1 (McCormack et al., 1997; Yates, III,
1998).
1 Abbreviations used in this manuscript include retention time (RT), liquid chro-

matography (LC), mass spectometry (MS), tandem mass spectrometry (MS/MS),
support vector regressor (SVR), artificial neural network (ANN) and false discovery
rate (FDR).
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In a typical liquid chromatography (LC)-MS/MS experiment (Figure 1A),
proteins are digested to peptides, and the peptides are separated by LC on a
reverse phase column in order of increasing hydrophobicity. The peptides elute
into the mass spectrometer, where tandem mass spectrometry (MS/MS) mea-
sures the mass-to-charge ratio of the intact and fragmented peptides, yielding
a tandem mass spectrum. One LC-MS/MS experiment yields tens of thousands
of MS/MS spectra. The identity of the peptides that produced the spectra, and
thus the identity of the original proteins, can be automatically deduced by a
database search algorithm such as SEQUEST (Eng et al., 1994).

As with any high-throughput technology, shotgun proteomics practioners must
constantly battle false positive identifications (Cargile et al., 2004; Qian et al.,
2005). The need to reduce false positives has spurred a proliferation of methods
for increasing peptide identification confidence. However, most of these methods
use information exclusively from the MS and MS/MS stages of analysis, ignoring
information from the LC stage, such as retention time (RT). RT is the amount
of time that a peptide is retained on the LC column (Figure 1B, top). It has the
advantage of being almost entirely independent of the information contained in
the MS/MS scan, and can therefore be used to increase peptide identification
confidence.

The goal of this paper is to incorporate RT into the peptide identification
process to increase peptide identification confidence. Previous efforts along these
lines have been hindered by RT variability, even on identical columns or multiple
runs of the same sample (Palmblad et al., 2004). Most such methods train a
single RT predictor using a limited subset of highly-reproducible chromatography
conditions (Krokhin et al., 2004), or perform a normalization that attempts to
eliminate variability (Petritis et al., 2006; Strittmatter et al., 2004). In practice,
however, researchers use a large number of diverse chromatographic conditions,
making a static RT predictor less useful. In this work, we demonstrate how to
dynamically train a support vector regressor (SVR) to predict RT for peptides in
a given chromatographic analysis, using only data generated during the current
run using composition related features (Figures 2 and 1B, bottom).

This approach makes the method portable to new chromatography condi-
tions or sample preparation protocols, adapting to differences in column length,
digestion condition, peptide chemistry and MudPIT salt step. Our RT predic-
tions are better correlated with observed RT than those produced by a static
predictor trained on different data. Furthermore, by eliminating peptide identi-
fications with an observed retention time that deviates greatly from predicted
retention time, our method increases the number of true positive peptide iden-
tifications over a range of false discovery rates. For one data set digested with
a non-standard enzyme (elastase), we demonstrate an increase of approximately
50% in true positives at a false discovery rate (FDR) of 3%. This result compares
favorably with (Strittmatter et al., 2004) (a true positive increase of 15% at 3%
FDR, from Table 2), but with much less training data. Thus, the results pre-
sented here have implications both for traditional shotgun proteomics research
using trypsin, as well as possibly enabling new strategies using non-standard
enzymes.
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(A) (B)

Fig. 1. Experimental overview. (A) In mass spectrometry, proteins are digested
to peptides, which are then separated using liquid chromatography and analyzed in a
tandem mass spectrometer. The experimental procedure yields a chromatogram, MS
and MS/MS spectra, and (ideally) peptide and protein identifications. (B, top) For
reverse phase chromatography, each peak in a chromatogram corresponds to a peptide
retained on the column for an amount of time that depends on its hydrophobicity.
(B, bottom) We train a support vector regressor with composition-related features to
predict RT for unknown peptides from the same chromatography run.

1.1 Related Work

Understanding and predicting peptide RT has a long history. For reverse phase
chromatography, peptide RT is roughly proportional to peptide hydrophobicity
(Frenz et al., 1990). Many models assume that peptide RT is a linear function
of peptide amino acid composition (Meek, 1980; Browne et al., 1982; Guo et al.,
1987; Hearn et al., 1988; Bihan et al., 2004). More recent models augment the
compositional approach with parameters for peptide length or mass (Mant et al.,
1989), or terms for residue context (Mant and Hodges, 2006) or positional effects
such as the identity of the N-term residue (Krokhin et al., 2004). Still more so-
phisticated models include parameters for structural features or measured chem-
ical properties (Ba̧czek et al., 2005; Petritis et al., 2006).

The most accurate and sophisticated peptide RT predictor is that of
Petritis et al. (2006), first presented in simpler form in Petritis et al. (2003),
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Fig. 2. Overview of data flow for peptide identification improvement. For
each LC-MS/MS experiment, we start with a collection of peptide-spectrum matches
(PSMs, top). We use PSMs to a random proteome to filter the original PSMs, producing
high-confidence PSMs at a 10% false discovery rate. These filtered PSMs, along with a
second set of random PSMs, are used to train a support vector regressor and to select
a threshold for filtering PSMs based on their retention time, yielding a trained model.
The model and a third set of random PSMs are used to select the final set of real
PSMs at a desired FDR. Not shown is the five-fold cross-validation used to validate
this method.

which uses an artificial neural network (ANN) to predict a normalized form of
RT. The large amount of data required to train the ANN (for Petritis et al.
(2006) 345,000 nonredundant peptides) makes retraining for new chromatogra-
phy conditions impractical. Although one could in theory transform predicted
RT values for different conditions, it is not clear how to handle changes in pep-
tide elution order. A more recent, but less complicated, ANN has since been
published (Shinoda et al., 2006).

Recently, a handful of RT predictors have found practical application in enhanc-
ing confidence of peptide identifications.Palmblad et al. (2002) predictRT for each
peptide using least-squares regression to determine amino acid weights, and then
use a χ2 test to rank candidate peptides based on deviation from expected mass
and predicted RT. As the authors admit, their RT prediction is poor compared to
other competing efforts, and improvement in protein identification is modest.

Kawakami et al. (2005) use the sum of residue retention coefficients to pre-
dict RT for peptides and phosphopeptides, but they make no clear distinction
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between training and test data. When predictions are made on data not used in
training, the correlation between predicted and observed RT deteriorates, a sign
of overfitting.

By far, Strittmatter et al. (2004) is the most successful example of using RT
prediction to increase peptide identification confidence. They use the ANN of
Petritis et al. (2003) to exclude all SEQUEST peptide identifications with pre-
dicted normalized RT that deviates more than 10% from observed normalized
RT. The result is roughly a 50% decrease in estimated false positives, although
true positives also decrease, frustrating a straightforward interpretation.

The methods presented in this paper yield a reduction in false positives as
great as that in Strittmatter et al. (2004), but require reduced training data,
produced from a single LC-MS/MS run.

2 Methods

2.1 Data Sets

We analyze eight separate data sets (Table 1), chosen to represent a diverse set
of chromatography conditions. Exact sample preparation protocols are given in
the supplement (noble.gs.washington.edu/proj/rt); here we give only brief
descriptions to highlight major differences. All data sets are from the yeast
Saccharomyces Cerevisiae. The first three data sets are taken from the mid-
dle and end of a 12-hour, 6-step, 2-phase strong cation exchange and reverse
phase multi-dimensional protein identification technology (MudPIT) analysis
(Washburn et al., 2001) of a tryptic digest of the soluble S. Cerevisiae proteome.
The MudPIT was performed with C18 beads, while all subsequent analyses are
with C12 beads. The number after the C refers to the length of the carbon chain
on the beads to which the peptides bind. Different length chains interact with
the peptides differently. The next three data sets are reverse phase analyses of a
tryptic digest of the soluble yeast proteome, each with a different length column
of 20cm, 40cm and 60cm. A fourth identically prepared yeast sample was ana-
lyzed with the ion-pairing agent trifluoroacetic acid (TFA). The two final data
sets are from yeast samples digested with the non-specific enzymes chymotrypsin
or elastase. Chymotrypsin cleaves after aromatic residues F, W, and Y, and elas-
tase cleaves after small hydrophobic residues A, L, I and V. Summary statisics
for the data sets, and for the training and testing data sets extracted from them,
are shown in Table 1.

2.2 Training and Testing Set Extraction

A high-confidence set of training and testing data is extracted from each of the
eight data sets. The spectra are first searched against both the real and shuffled
versions of the S. cerevisiae proteome with SEQUEST (Eng et al., 1994) and
then identifications are filtered using the following criteria: charge state of +2,
peptide sequence ending in K or R (except for the chymotrypsin and elastin data
sets), and allowing any number of missed tryptic cleavages.

noble.gs.washington.edu/proj/rt
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We use the number of matches in the search against a shuffled proteome as
an estimate of false positive matches in a search against the real proteome. Both
searches use identical search criteria. High-confidence spectra identifications are
selected by setting an Xcorr threshold so that the number of matches to the
shuffled proteome above this threshold is 10% of the number of matches to the
real proteome; this is equivalent to a 10% FDR. If the number of real matches at
a 10% FDR is less than 200, then the top 200 spectra are used; this is because
regression performance deteriorated with less than 200 spectra. When multiple
spectra matched a single peptide according to these criteria, the spectrum with
the highest Xcorr is selected, to avoid bias in the regression towards common
peptides. The resulting set of peptides and retention times is split to form a 3:1
ratio between the training and testing data sets (Table 1) for each chromatogra-
phy run, which are then used to train and test the SVR. No peptides are allowed
to occur in both the training and testing data sets.

2.3 Support Vector Regression

As with other forms of regression, an SVR learns a function that relates a de-
pendent variable (in this case, RT) to a set of independent variables. An SVR
builds a regressor out of a subset of the training examples, known as support
vectors. Training examples that are within a tolerance value ε of the model pre-
diction are ignored (Vapnik, 1995). To generate the independent variables, each
peptide from the training and test sets is represented as a 63-element vector
comprised of the following: 20 elements to represent the total number of each
amino acid residue in the peptide; 40 binary elements to represent the iden-
tity of the extreme N-terminal (N-term) and penultimate C-terminal (C-term)
residues, respectively; and three additional elements to represent the identity of
the last C-term residue (either K or R), and the peptide length and mass. For
the non-specific enzymes, the ultimate C-terminal residue is used instead of the
penultimate, and the K or R term is set to zero.

An SVR is trained on each high-quality training set and tested by measuring
the R value between predicted and observed RT on a held-out test set. R value
is a statistical measure of the correlation between two data sets. The R value
for two data sets x and y of length n is given by r = Cov(x, y)/σxσy, where
Cov(x, y) = n

∑
xy −

∑
x

∑
y, the covariance of data sets x and y, and σx =√

n
∑

x2 − (
∑

x)2, the standard deviation of dataset x. It is important to note
that a separate SVR is trained for each data set in Table 1.

The SVR is trained and tested twice using two kinds of kernels: a linear
kernel, because it allows ready interpretion of the weight it assigns to each fea-
ture (Section 3.2); and a Gaussian kernel (also known as a radial-basis function
kernel), because it allows maximum flexibility in the functions that it can suc-
cessfully regress.

Hyperparameters for each kernel are chosen by three-fold cross-validation
on the training set. For both kernels, the SVR is trained with an ε insensitive-loss
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hyperparameter of 0.1; other values of ε did not yield radically different results.
Another hyperparameter used in the regression is the soft-margin penalty C,
which can be thought of as a bound on the weight that can be given to each
training example. C was initially allowed to range over ten orders of magnitude
from 10−3 to 107. For the final cross-validation, to decrease processing time, C is
constrained to be 10−1, 100, or 101 for the linear kernel, and 105, 106 or 107 for
the Gaussian kernel. The Gaussian kernel has an additional hyperparameter σ,
which corresponds to the width of the Gaussians used; it is set to 10−6, 10−7 and
10−8. R values are reported after hyperparameter selection on the appropriate
held-out test set (Table 1).

The SVR is implemented using the publicly available software package PyML
(pyml.sourceforge.net). Source code for producing the results presented here
can be found at http://noble.gs.washington.edu/proj/rt.

Table 1. Eight data sets used to train and test the support vector regressor.
Each column lists the total number of +2 spectra associated with peptides that satisfy
that data set’s trypticity requirements (Total), the number of high-confidence spectra
selected at a 10% FDR (Confident), and the subsets of the high-confidence spectra
used to train and test the performance of the regressor.

Data set Total Confident Train Test
Y-20CM 6929 2073 1554 519
Y-40CM 7220 2409 1806 603
Y-60CM 7459 2774 2080 694
Y-TFA 11977 3179 2384 795

Y-CHYMO 2191 200 150 50
Y-ELAST 4377 200 150 50

Y-MUDPIT-1 2227 280 210 70
Y-MUDPIT-2 3035 485 363 122

3 Results

3.1 Support Vector Regression

We first evaluate our dynamically trained regressor by comparing it to a pub-
lished, fixed-parameter regressor from Krokhin et al. (2004). We measure perfor-
mance by comparing correlation (measured by R value) between observed and
predicted RT for our SVR with the correlation between observed and predicted
relative hydrophobicity from the fixed-parameter regression. One of the kernels
(either Gaussian or linear kernel) outperforms the fixed parameter regression
across all data sets (Table 2 and Figure 3). Furthermore, the performance of
the fixed and learned regressors are qualitatively the same: data sets that had
relatively poor correlation for one method had similarly poor correlation for the
other. In general, the regression performs best on data sets with a large number
of high-confidence identifications (Table 1).

pyml.sourceforge.net
http://noble.gs.washington.edu/proj/rt
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Table 2. R values for a fixed regression compared to a learned regression
using the Gaussian or linear kernels. Correlation for eight data sets for fixed
parameters described in Krokhin et al. (2004) (Fixed) and parameters learned for each
dataset with a Gaussian or linear kernel. The Fixed values differ in the first and third
columns because they are evaluated on slightly different randomly selected subsets of
the high-confidence PSMs.

Data set Fixed Gaussian Fixed Linear
20CM 0.881 0.908 0.877 0.892
40CM 0.892 0.897 0.894 0.891
60CM 0.914 0.926 0.889 0.892

CHYMO 0.871 0.865 0.761 0.792
ELAST 0.823 0.850 0.843 0.856

TFA 0.818 0.842 0.882 0.905
MUDPIT-1 0.743 0.783 0.797 0.850
MUDPIT-2 0.806 0.803 0.791 0.828

R = 0.881

Fixed
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Fig. 3. Example of retention time prediction. Predictions of hydrophobicity,
a proxy for retention time (RT), made by a fixed parameter linear regression from
Krokhin et al. (2004) (left) are less accurate than RT predictions by a support vector
regression that is trained and tested on subsets of data from the same chromatography
run (right).

3.2 Residue Weights

An advantage of using a linear kernel for the SVR is that it allows calculation
of the weights for each feature, using the following formula:

ŵ =
∑

i

αix̂i (1)

where ŵ is the feature weight vector, x̂i is the ith training example (in this case,
the 63-element vector representing a peptide), and αi is the weight associated with
the ith training example by the SVR. Weights correspond to the feature’s relative
contribution to retention time. After performing the regression on each data set,
we calculate the weights given to each residue for peptide composition, shown in
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Fig. 4. Predicted retention time difference for real and random peptide-
spectrum matches. Shown are the Xcorr values and difference between observed RT
and RT predicted by the Gaussian kernel for matches to the real yeast proteome (black)
and the shuffled yeast proteome (gray) for the 20CM data set.
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Fig. 5. Contributions to retention time (RT). Shown are the support vector
regression weights for the linear kernel for the 20 features corresponding to peptide
amino acid composition; higher values indicate a positive contribution to RT. White
circles indicate the individual weights for each of the eight data sets; black circles
indicate the means for all data sets.

Figure 5. We observe several expected trends: hydrophobic residues such F and W
have higher weights, and hydrophilic residues such as K and R show lower weights.
While the SVR weights are largely consistent across chromatography conditions,
there are some notable differences, such as the relative weight of K and R. Weights
for different length columns (20CM, 40CM, 60CM) are qualitatively similar, but
differ in magnitude. The largest weights are associated with the non-specific cleav-
ages, while the smallest are associated with the MudPIT analysis (supplement).
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3.3 Improved Peptide Identification

In addition to measuring the R value of predicted RT on the test set, each trained
SVR is also tested for its ability to eliminate false positive peptide identifica-
tions from its respective chromatography run. We assess confidence of peptide
identifications by searching the spectra from each data set against a shuffled
version of the appropriate organism’s proteome sequence database; any hits to
this database above a particular Xcorr threshold are considered an estimate
of the number of false positives FP against the real database. Then, if P is
the number of positive hits to the real database, FDR can be calculated using:
FDR = FP/P . To reduce FDR, we eliminate identifications with observed RT
that deviate from the predicted RT by a constant amount of time, and then
measure whether this filtering step improves the number of true positives over
a range of FDR thresholds compared to identifications without filtering. An ex-
ample of the deviation of predicted and observed retention time for matches to
the real and random proteomes is shown in Figure 4.

The retention time threshold used to filter identifications is identified in the
following manner, as outlined in schematic in Figure 2. In addition to the PSMs
from the real yeast proteome, we use PSMs from three shuffled proteomes. The
first shuffled proteome is used to select identifications at 10% FDR, as described
in Section 2.2. The second shuffled proteome is used to calculate the true positives
across a range of FDR values between 0.5% and 10% (in 0.5% increments) for
a range of retention time thresholds between 0 and 240 minutes (in 10 minute
increments). The retention time threshold that produces the highest number of
true positives across the largest number of FDR values is selected as the optimal
maximum RT deviation threshold. We then determine the performance of that
threshold by calculating true positives across the same range of FDR values using
the third shuffled proteome. We repeat this procedure five times, and report
an average of the true positives obtained on each of the five iterations. This
is compared to an average of true positive performance without any retention
time filtration across the same five iterations. The multiple iterations are made
necessary by the high variance associated with false positive estimates from
shuffled proteomes (Huttlin et al., 2006).

The results, shown in Figure 6, show a consistent decrease in false positive
peptide identifications across all the data sets and most FDR thresholds. The dy-
namically trained SVR effectively adapts to variation in column length (Figure 6,
top), digestion conditions (Figure 6, middle) and MudPIT salt step (Figure 6,
bottom). The improvement in peptide identification is largest with the non-
specific digest elastase. Increases in true positives tend to be largest in the 2%
to 3% FDR range, and the Gaussian kernel outperforms the linear kernel in most
cases, except for the 60CM column. At a 3% FDR, the largest relative increase
in true positive peptide identifications is 52% for the Gaussian kernel on the
ELAST data set, from 509 to 772 identifications; the smallest increase is 15%
for the 60CM data set, from 1967 to 2270 identifications.
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Fig. 6. Improved peptide identification over varying conditions. The dynam-
ically trained SVR is able to cope with chromatographic differences due to variations
in column length (left), peptide chemistry (right) and MudPIT salt step (bottom).
Spectra from diverse chromatography conditions are searched against the appropriate
proteome to yield positive IDs and a shuffled proteome to yield an estimate of false
positive IDs. Shown are plots of false discovery rate vs. true positives. The solid curve
(Gaussian) and heavy dotted curve (Linear) are for the test data set after filtering with
the best classifier found on the training data using the Gaussian and linear kernels,
respectively, while the light dotted curve (Unfiltered) is without any filtering.
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4 Discussion

We have demonstrated that a dynamically trained support vector regressor is
capable of learning to predict peptide RT from a single LC-MS/MS run across a
variety of chromatographic conditions, adapting to variation in column length,
digestion conditions, peptide chemistry, and MudPIT salt step. Furthermore, us-
ing the SVR to filter peptide identifications results in an increase in true positive
identifications across almost all false discovery rates and data sets. Of special in-
terest is the improvement in identifications for samples with non-specific enzyme
cleavage, a form of analysis typically plagued by false positive identifications.

It is important to note that filtering identifications in this manner is not possi-
ble with other methods of predicting RT (such as calculating relative hydropho-
bicity, as in (Krokhin et al., 2004)), since these methods only predict relative, not
absolute retention time. This is highlighted by the difference in scales between
the learned and fixed retention time regression in Figure 3. Converting relative
to absolute retention time would require methods similar to those outlined here.

Our SVR method does not come without limitations. In particular, data sets
of low complexity would probably not produce a diverse enough set of peptides
to allow for accurate regression. In addition, poor quality data sets, with few
identifications (less than 100 above the 10% FDR), will also fail to yield good
regressions. Analysis of such data sets could benefit from improved selection of
high-confidence identifications, or from an approach that combines data from
the poor quality data set with data from higher quality data sets.
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