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ABSTRACT: Interpreting the potentially vast number of
hypotheses generated by a shotgun proteomics experiment
requires a valid and accurate procedure for assigning statistical
confidence estimates to identified tandem mass spectra.
Despite the crucial role such procedures play in most high-
throughput proteomics experiments, the scientific literature
has not reached a consensus about the best confidence
estimation methodology. In this work, we evaluate, using
theoretical and empirical analysis, four previously proposed
protocols for estimating the false discovery rate (FDR)
associated with a set of identified tandem mass spectra: two
variants of the target-decoy competition protocol (TDC) of
Elias and Gygi and two variants of the separate target-decoy
search protocol of Kal̈l et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover,
the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random
subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR
estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search
protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target
identifications.
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1. INTRODUCTION

A typical shotgun proteomics produces thousands of tandem
mass spectra (hereafter referred to simply as “spectra”), each of
which can be tentatively assigned a corresponding peptide using
a database search procedure (reviewed in ref 1). Some of those
assignments will be correct, while others will be false, and the
statistical problem we face is estimating the proportion of false
peptide assignments among all assignments whose quality
exceeds a given threshold. This proportion is commonly
referred to as the false discovery rate (FDR), and the list of
reported discoveries is typically set so that the estimated FDR is
less than some desired threshold, say 0.05 (5%). In practice,
solutions to this problem commonly rely on comparing the
spectrum identifications obtained from searching a real (target)
peptide database with those obtained from searching against a
decoy database of shuffled or reversed peptides.
At least four distinct, decoy-based FDR estimation protocols

have been advanced in the literature. The first, proposed by
Elias and Gygi, finds the best matching peptide for each
spectrum relative to a concatenated target-decoy database and
estimates the FDR among all peptide-spectrum matches

(PSMs) above a specified score threshold.2 In the example
shown in Figure 1, each of the five observed spectra is
associated with a top-scoring target peptide and a correspond-
ing top-scoring decoy peptide. In some cases, the top score is
less than a specified score threshold, in which case no peptide is
indicated (e.g., the third spectrum has no corresponding decoy
peptide). A key component of the Elias and Gygi strategy is
target-decoy competition (TDC), in which the top-scoring
target and decoy peptides compete with one another and only
the higher scoring of the two peptides is retained in the final
list. In practice, this competition is carried out by searching the
spectra against a concatenated database containing the target
and decoy peptides. Thus, in Figure 1, the reported list (“C-
TDC” for combined TDC) contains three target peptides and
two decoys. The estimated FDR is simply twice the number of
decoys in the list, divided by the total length of the list (in this
case, (2 × 2)/5 = 0.8).
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One apparent drawback of the C-TDC protocol is that the
reported list of identified spectra contains a mixture of target
and decoy peptides. In practice, of course, the user is typically
interested only in the spectra that match a target peptide.
Accordingly, the target-only variant of target-decoy competition
(T-TDC) eliminates decoy identifications from the reported
list and adjusts the FDR estimate accordingly.3,4 The FDR
estimate is simply the number of decoys divided by the number
of targets (i.e., 2/3 = 0.67). Hence, for a fixed score threshold,
the T-TDC protocol yields the same number of target
identifications as C-TDC but a lower estimated FDR.
Unfortunately, the target-decoy competition that is the basis

for both of these methods leads to two closely related
problems. First, the competition occasionally eliminates a
high-scoring target PSM because the corresponding decoy PSM
happened to achieve an even higher score. This happened, for
example, in Figure 1 for the target peptide “PSHPGAK,” which
matches the second observed spectrum with a high score but is
not reported by either TDC method. Second, when using
randomly generated decoy peptides, the TDC method exhibits
an undesirable variability because the filtered target PSMs differ
each time the procedure is run. Note that the use of reversed,
rather than shuffled, decoy peptides simply hides this problem
by arbitrarily fixing the decoys and the corresponding filtered
peptides.

To avoid randomly discarding a small proportion of the high-
scoring target PSMs, Kal̈l et al. proposed an alternative method,
which we call “separated target-decoy search” (STDS), in which
the decoy PSMs are used separately to estimate the FDR
among the target PSMs.5 In STDS, all target PSMs above a
specified threshold are reported to the user. For the small set of
PSMs in Figure 1, the corresponding FDR is the total number
of above-threshold decoy PSMs divided by the number of
above-threshold target PSMs (i.e., 3/4 = 0.75). A second, more
sophisticated approach proposed by Kal̈l et al., which we call
“STDS-PIT,” involves estimating one additional parameter, the
“percentage of incorrect targets” (PIT), from the data. In
STDS-PIT, the final FDR estimate is the STDS estimate
multiplied by the PIT; however, as we discuss later, the
inclusion of this parameter is problematic.
We recently argued that because the STDS methods estimate

the significance of each target PSM using the set of all decoy
PSMs, their use should be restricted to search engines that use
fairly well-calibrated scores.6 Intuitively, a PSM score function is
well-calibrated with respect to spectra (and a null peptide
database model) if a score of x assigned to spectrum σi has the
same meaning or significance as a score of x assigned to
spectrum σj. More precisely, if Si is the score of the best match
to spectrum σi in a randomly drawn database then the score is
calibrated if for any spectra σi and σj, P(Si ≥ Sj) = P(Sj ≥ Si).

Figure 1. Comparison of target-decoy FDR estimation procedures. Each spectrum is associated with a top-scoring target peptide and decoy peptide,
although only peptides that score above a specified threshold are displayed. The higher scoring of the two peptides is circled. The corresponding lists
of PSMs for C-TDC, T-TDC, and STDS/STDS-PIT are shown.

Figure 2. Foreign and native spectra. The sets of peptides present in the sample and the peptides in the database overlap one another. Only peptides
present in both (red) generate native spectra that have a chance to be correctly identified by the database search algorithm.
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Moreover, we demonstrated that when the score is calibrated,
STDS-PIT typically reports substantially more discoveries than
T-TDC does at a given FDR threshold. In the current work, to
better understand the source of the apparent power advantage
displayed by STDS-PIT, we introduce a formal statistical model
that allows us to rigorously evaluate the aforementioned FDR
estimation methods: C-TDC, T-TDC, STDS, and STDS-PIT.
We show in the context of our model that the two protocols

based on target-decoy competition are asymptotically accurate
in estimating the FDR within their respective lists of PSMs.
(Although, for C-TDC, that list is not one we are typically
interested in.) On the other hand, the STDS procedure is
conservative (overestimating the true FDR) and the STDS-PIT
method is anticonservative (underestimating the true FDR).
Consequently, motivated by the desire for a statistically
unbiased method that does not arbitrarily discard some high-
scoring PSMs, we designed a novel method, the mix-max
procedure, that extends the STDS-PIT method and is
demonstrably unbiased. Similar to STDS-PIT, the mix-max
procedure requires calibrated scores, which can be obtained
using existing, calibrated score functions7,8 or by postprocessing
scores using our recently described nonparametric calibration
procedure.6 Open-source implementations of the T-TDC and
mix-max estimation procedures are available as part of the Crux
mass spectrometry software toolkit (http://cruxtoolkit.
sourceforge.net, assign-confidence command).9

2. RESULTS

2.1. Theoretical Model of the Spectrum Identification
Problem

To rigorously evaluate the four FDR estimation methods, we
designed a simple probabilistic model of decoy-based FDR
estimation. A key component of the model is its division of the
set of spectra into two subsets (Figure 2): the “native” spectra
that were generated by a peptide present in the target database
and the “foreign” spectra that were generated by contaminant
peptides, peptide variants that are not in the given database,
peptides with unexpected post-translational modifications and
nonpeptide species, as well as spectra for which the charge state
was not correctly identified. Note that this native/foreign
distinction applies to spectra and is hence orthogonal to the
more familiar target/decoy distinction, which applies to
peptides. As will become apparent, the distinction between
foreign and native spectra is a critical component of our model.
Given the foreign/native distinction, the optimal target PSM

score of a native spectrum σi can be defined as Wi = max{Xi,Yi},
where Xi is the score of σi relative to the peptide that generated
it and Yi is the score of the best match of σi to the remainder of
the target database. (For reference, all of our notation is
summarized in Table 1.) Note that Wi is observed but Xi and Yi
are not. We denote by Zi the observed score of the (optimal)
PSM between σi and the decoy database. We can then
distinguish between three different FDRs, relative to a given
score threshold:
(1) FC/DC, the FDR in the combined list of target and decoy

PSMs after TDC, which is what C-TDC aims to estimate.
(2) FT/DT, the FDR in that same list with the decoy PSMs

removed, which is what T-TDC aims to estimate.
(3) F/D, the FDR in the complete set of target PSMs, which

is what the STDS and STDS-PIT (as well as our newly
proposed mix-max) procedures aim to estimate. Among these
three options, we argue that the third (F/D) is the most useful

to ascertain. The first FDR (FC/DC) includes decoys, which
typically are not of direct scientific interest. And both the first
and second FDRs (FC/DC and FT/DT) exclude potentially
valuable, high-scoring target PSMs if they happen to lose the
target-decoy competition.
2.2. Two out of These Four Existing Estimation Methods
Are Asymptotically Unbiased

Using our model, we first investigated the Elias and Gygi target-
decoy competition (C-TDC) and its target-only variant (T-
TDC). Both of these methods rest upon the assumption that
for each i the distributions of Yi and Zi are identical and
independent given Xi, and, in particular, (assuming no ties or
that ties are randomly broken) P(Zi > Yi | ) = 1/2, where
= {max(Yi,Zi) > max(Xi,T)} is the event: the PSM between σi
and its best match in the concatenated database db ⊕ dc is a
false positive. We used this assumption to prove (see Methods
4 and Supplementary Note 1 in the SI) that both methods
consistently estimate the FDR for their respective lists of
discoveries: C-TDC for the concatenated list of target and

Table 1. Variables and Their Definitionsa

variable definition

db target peptide database
dc decoy peptide database
db ⊕ dc combined target and decoy database
Σ all spectra
nΣ number of spectra
Σ1 native spectra
Σ0 foreign spectra
π1 proportion of native spectra
π0 proportion of foreign spectra
σi single spectrum
xi/Xi score of the match between the ith spectrum and the peptide

that generated it (−∞ if the spectrum is foreign)
yi/Yi score of the best match between the ith spectrum and the

irrelevant part of the target database
zi/Zi score of the best match between the ith spectrum and the decoy

database
wi/Wi max(Xi, Yi)
T score threshold
α FDR threshold

the event the PSM between σ and its best match in the
concatenated database is a false positive

D number of discoveries in a search of the target database
F number of false positive discoveries in a search of the target

database
DC number of discoveries in the combined list of discoveries when

searching the concatenated database
FC number of false positive discoveries in the combined list of

discoveries when searching the concatenated database
DD number of decoy discoveries in a search of the concatenated

database
FD number of false positive decoy discoveries in a search of the

concatenated database (same as DD)
DT number of target discoveries in a search of the concatenated

database
FT number of target false discoveries in a search of the concatenated

database
GP(σ) the peptide that generated the native spectrum σ

SDB(σ, ) score of the match between spectrum σ and peptide ∈ DB in
the context of database DB

S(σ, DB) score of the best match of σ in the peptide database DB: ∈max db
SDB(σ, )

aWhen two versions are listed, the capitalized form stands for the
random variable, whereas the lowercase is a specific realization thereof.
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decoy PSMs and T-TDC for the filtered list of target PSMs.
This finding suggests that C-TDC should not be used to
estimate the target-PSM FDR in the concatenated list (FT/DT)
and is consistent with recently reported results suggesting that
C-TDC is more conservative than T-TDC.3 (See Supple-
mentary Figure 1 in the SI.) We also showed analytically that
C-TDC conservatively estimates the FDR in the target-only
search (F/D).
We then used our model to analyze STDS and STDS-PIT,

both of which implicitly require that all of the incorrect PSM
scores Yi and Zi are drawn independently from the same null
distribution. Note that this is a much stronger assumption than
the one required by the TDC methods, and it essentially
amounts to using a calibrated score. We argue that, in this
context, STDS-PIT underestimates the true FDR (Supple-
mentary Note 2 in the SI and Methods 4.1). Specifically, STDS-
PIT relies on estimating the “percentage of incorrect target”
PSMs, which is supposed to be the overall rate of false
discoveries; however, we demonstrate that what the method
actually estimates is the proportion π0 of foreign spectra.

Essentially, the STDS-PIT estimate ignores all of the incorrect
targets that are attributed to the native spectra.
We note that in a followup work Kal̈l et al. proposed

estimating the PIT using an alternative method,10,11 which can
improve the results of STDS-PIT because it often yields a lower
estimate of the PIT compared with the original approach;
however, as we explain in the Methods 4 section, the specific
implementation of that revised method is not theoretically
sound. Moreover, as we show in Supplementary Figure 3 in the
SI, in the context of our model, the revised method, which we
refer to as STDS-PIT+qvality, still shows considerable liberal
bias, which is quite close to that of the original method.
Therefore, the analysis we present here concentrates on the
original STDS-PIT method.
At the same time, it is clear that the simple STDS procedure

overestimates the number of false discoveries. Indeed, the
STDS estimate, eq 4, corresponds to the case where there are
no native spectra (because it assumes π0 = 1) so all spectra are
foreign. Because the estimated FDR among the native spectra
PSMs should generally be much lower than the estimated rate

Figure 3. Accuracy of estimated FDR (mixture model). Each panel plots, as a function of estimated FDR, the logarithm of the median ratio between
the actual FDR and the nominal one (so a value of 0 means perfect median estimation). The data were generated using the normal mixture model
(see Methods 4), and the number of spectra increased from 500 to 70 000, keeping the native spectra rate at 0.5. The medians are calculated at each
FDR value with respect to 10K random draws of both native and foreign spectra. Because all of the plots are on the same scale, it is easy to see that
STDS overestimates the true FDR while STDS-PIT underestimates it. Both T-TDC and mix-max become increasingly more accurate as the
spectrum set or the nominal FDR level becomes larger, but mix-max seems slightly more accurate. In the case of both T-TDC and mix-max and small
spectrum sets (500 and 1000) the median estimated FDR jumps from 0 to a number greater than 0.001; hence, the logarithm of the ratio to the
nominal FDR is not defined for some small nominal FDR values. When the average separation between the correct PSM scores and the false PSM
scores is further increased we noted similar results, albeit STDS-PIT suffers a reduced bias whereas the opposite holds for STDS (Supplementary
Figure 2 in the SI).
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among the foreign spectra (the true rate of which is by
definition always 100%), it follows that the STDS method is
overestimating the FDR and hence is overly conservative.

2.3. Mix-Max Approach

Motivated by these observations and by our desire for a method
that avoids the drawbacks of target-decoy competition, we
designed a mixture-maximum (mix-max) FDR estimation
procedure that reports all sufficiently high scoring target
PSMs while consistently estimating the FDR under the same,
stricter assumption that Yi and Zi are drawn independently from
the same null distribution. The mix-max approach separately
estimates the number of false discoveries due to foreign spectra
and due to native spectra. The first part essentially follows the
STDS-PIT approach; that is, like STDS-PIT, mix-max estimates
properties of the null distribution from the decoy set. The
second is a bit more involved and requires estimating the
distribution of Wi for a native spectrum (Methods 4). We
define the resulting mix-max FDR estimation as

π π·∑ + − ·∑ −

∑
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π

π
π= > >
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where 1zi>T, 1wi>T, 1wk≤zj, and 1zk≤zj are 1 or 0, depending on
whether the corresponding inequality holds, and where π0̂ is the
estimated proportion of foreign spectra, T is the score
threshold, wi and zj refer to the observed target and decoy
PSM scores, and [x][0,1] := max{0, min{1,x}} ensures that x
remains an acceptable probability value. In the equation, the
numerator is the sum of two terms, corresponding to the
estimated number of false positives due to foreign and native
spectra, respectively, and the denominator is the observed
number of accepted (target) PSMs.

2.4. Simulation Results

We first sought to experimentally validate our theoretical
analysis using simulated data. The advantage of using simulated
results is that we know which PSMs are “true” (drawn from the

true PSM distribution) and which are “false” (drawn from the
false PSM distribution); therefore, we can gauge the accuracy of
our estimates in the context of our model.
In the simulations we drew target and decoy “optimal PSM”

scores from two different Gaussian distributions (Methods 4).
More specifically, each “native PSM” score was set to the
maximum of a randomly drawn false PSM score (Yi) and a
randomly drawn true PSM score (Xi), whereas each “foreign
PSM” score and each decoy PSM score (Zi) were drawn
according to the same distribution of false PSM scores as (Yi).
We first examined the issue of the PIT, or percentage of

incorrect target PSMs, versus the percentage of foreign spectra.
To do so we used the recipe of Kal̈l et al. (also described here
in the Methods 4 section), which estimates what is known in
the FDR literature as the proportion of true null hypotheses, π0.
Our claim is that because in this context the null distribution is
estimated only from decoy PSMs it corresponds to a null
hypothesis that the spectrum is foreign. Thus, the estimated
value π0 ̂ corresponds to the proportion of foreign spectra rather
than the PIT.
Simulating 100 K as well as 10 K spectra, of which 50% are

native and 50% are foreign, the median estimated value of π0 ̂
across 10 K independent experiments was 0.496 for both the 10
K and 100 K spectrum sets, whereas the median of the actual
proportion of false PSMs among all target PSMs (Xi < Yi) was
0.519 for both spectrum sets. This result agrees with our claim
that π0 ̂ represents the estimated proportion of foreign spectra,
rather than the overall fraction of incorrect target PSMs, as
originally claimed.
We next looked at the accuracy of the FDR estimation

procedures when applied to data randomly generated according
to the same mixture model. Figure 3 shows that, consistent with
our analysis, the accuracy of T-TDC in estimating the FDR in
the filtered list of target PSMs (FT/DT) improves with the size
of the spectrum set. Noticeably, T-TDC underestimates the
true FDR for small spectrum sets, a fact that we will return to
later on. Similarly, as our analysis predicts, STDS consistently
overestimates and STDS-PIT consistently underestimates the

Figure 4.Median ratios of number of discoveries. Both panels plot, as a function of estimated FDR, the median ratio of the number of mix-max to T-
TDC/STDS/STDS-PIT discoveries. The data were generated using the normal mixture model (see Methods 4), and the number of spectra was 10K
for the left panel and 30K for the right panel. The native spectra rate was set to 0.5 with each spectra set drawn 10K times. Consistent with STDS
overestimating the true FDR (Figure 3), it reports fewer discoveries than mix-max, which estimates the FDR quite accurately. Conversely, STDS-PIT
underestimates the FDR; hence, it reports more discoveries than mix-max. Less obvious is the subtle but consistent trend of increasingly more mix-
max than T-TDC discoveries (black) as the FDR level increases. The results are qualitatively similar for the other sizes of spectrum sets we looked at:
500, 1K, and 70K.
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true FDR in the unfiltered list of target PSMs (F/D). The mix-
max procedure seems to offer the best accuracy throughout in
estimating F/D: it is even somewhat more accurate than T-
TDC, which is estimating the FDR in the filtered list of target
PSMs (FT/DT), and the procedure is only somewhat inaccurate
for small spectrum sets and small FDR rates. As expected, we
also find that C-TDC is increasingly more accurate in
predicting the FDR in the combined list of target and decoy
discoveries (FC/DC) as the size of the spectrum set increases,
whereas C-TDC is consistently overestimating the FDR in the
target-only list of discoveries (Supplementary Figure 1 in the
SI). Finally, we note that STDS-PIT+qvality10,11 improves very
little on the liberal bias of STDS-PIT in this setup
(Supplementary Figure 3 in the SI).
In light of the results in Figure 3, it is not surprising that

STDS yields fewer discoveries and STDS-PIT yields more
discoveries than mix-max at a given FDR (Figure 4, magenta
and green, respectively), corresponding to the two STDS
methods’ respective tendencies to over- and underestimate the
FDR; however, the fact that mix-max yields a small but
consistently increasing larger percentage of discoveries than T-
TDC does not seem to be a result of a difference in the
accuracy of the FDR estimation (Figure 3). Instead, this trend
most likely can be attributed to the fact that mix-max does not
randomly filter its target PSMs, which, given that the score is
calibrated, means swapping the filtered target PSMs with ones
that are less likely to be “correct,” or drawn from the native
distribution in our case.
The exact values we observe in Figure 4 depend on several

parameters of our model, including, for example, the proportion
of native spectra. The latter was set to 0.5 in that Figure. By
varying this proportion we observed that the difference
between the methods diminishes as the proportion of native
spectra decreases (Supplementary Figure 5 in the SI). Similarly,
the difference between the number of discoveries is smaller
when the average separation between the correct PSM scores
and the false PSM scores is increased. Specifically, by changing
the parameters of the normal distribution from which the
alternative scores are drawn we notice the discovery ratios are
closer to 1 (Supplementary Figure 4 in the SI). We note that in
terms of the overall accuracy of the FDR estimation methods
such larger separation seems to mostly benefit STDS-PIT,
whose liberal bias is reduced whereas the opposite holds for
STDS (Supplementary Figure 2 in the SI).

The discussion so far overlooked an inherent feature of any
decoy-based FDR estimation procedure, namely, the variability
in the reported discoveries. In our simulations, this variability is
due to both the target and decoy PSMs being drawn in each
“experiment.” As such, it is instructive to gauge this variability
as an indication of what we might see in any given experiment
with real data. Taking a closer look at the ratio of mix-max to T-
TDC discoveries, we see that while the median value of this
ratio stays more or less constant, the variability for the smaller
sets of spectra is substantial (Figure 5). On the basis of the fact
that for small sets of spectra (∼1000 spectra) the subtle
advantage that mix-max offers over T-TDC is much smaller
than the observed variability, one might be tempted to
conclude that there is no point to using mix-max in such a
setting; however, one should keep in mind that (a) for such size
sets T-TDC is too liberal (quite a bit more than mix-max:
Figure 3) and (b) mix-max still offers the advantage of reduced
variability in the list of discoveries, which is discussed later.

2.5. Analysis of Real Data

We next examined the behavior of all five FDR estimation
procedures, C-TDC, T-TDC, STDS, STDS-PIT, and mix-max,
using three real data sets, derived from a yeast whole cell
lysate,12 a C. elegans (worm) digest,13 and an analysis of the
erythrocytic cycle of the malaria parasite Plasmodium
falciparum.14 Searches were carried out using two different
search engines, MS-GF+15 and Tide,16 and each tool was
applied to each target database as well as to 1000 randomly
drawn decoy databases. Each FDR estimation method was
applied to each of these 1000 sets of paired optimal target and
decoy PSM scores. More precisely, because STDS, STDS-PIT,
and mix-max require calibrated scores (and T-TDC gains
significantly from calibration), we calibrated both Tide’s XCorr
score and MS-GF+’s E value score using spectrum-specific
empirical distributions constructed from 10K decoys before
applying any FDR estimation procedure. (See Methods 4.)
In this real data setting, we no longer know which PSMs are

false; however, we can still draw plots similar to the ones in
Figure 4 and compare their general aspects with the ones that
we drew based on the simulated data. Overall, the results
obtained on real data sets agree with our simulation based
analysis. In particular, STDS consistently yields fewer
discoveries than mix-max, whereas STDS-PIT consistently
yields more discoveries than mix-max (Figure 6, magenta and
green curves, respectively). Furthermore, mix-max and T-TDC
yield very similar numbers of discoveries, with mix-max

Figure 5. Quantiles of ratios of mix-max to T-TDC number of discoveries. Each panel plots, as a function of estimated FDR, the 0.05/0.5/0.95
quantiles of the ratio of the number of mix-max to T-TDC discoveries. The data were generated using the normal mixture model (see Methods 4),
and the number of spectra increased from 1K for the left panel to 30K for the right panel. The native spectra rate was set to 0.5, and the number of
draws of both target and decoy PSM scores was 10K for all spectrum sets. The results are qualitatively similar for the other sizes of spectrum sets we
looked at: 500 and 70K.
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showing a small but consistent gain in the larger spectrum sets
of the yeast data (Figure 6, black curve, yeast rows). In the
smaller malaria and worm data sets, except for very small FDRs,
mix-max is almost tied with T-TDC, although it does have a
miniscule overall advantage in terms of the number of
discoveries (Figure 6, black curve, worm and malaria rows).
Finally, consistent with our analysis that C-TDC is conservative
when applied to the target-only discoveries (Supplementary
Figure 1 in the SI), we find it is reporting significantly fewer
discoveries than T-TDC does (Supplementary Figure 6 in the
SI)

The overall smaller differences in the real compared with the
simulated data between mix-max and the other three FDR
estimation methods are somewhat explained when we examine
results from simulations that set π0 = 0.7, which seems more
appropriate for this real data (Supplementary Figure 5 in the SI,
top panels). Also, recall that a potentially larger separation
between the native and null scores could also have an impact
(Supplementary Figure 4 in the SI). Finally, the real data differs
from the simulated one in that it uses our 10K calibration
procedure. In Supplementary Note 4 in the SI we look at how
incorporating this calibration procedure with the simulated data
impacts the FDR estimation procedures. We find that

Figure 6. Median ratios of number of discoveries in the yeast data set. Each panel plots, as a function of estimated FDR, the median ratio of the
number of mix-max to T-TDC/STDS/STDS-PIT discoveries. (For reference, the number of T-TDC discoveries is given in Supplementary Figure 6
in the SI.) The spectrum sets are the yeast, worm, and malaria data sets. The yeast data are separated by charge state, whereas the significantly smaller
worm and malaria data sets are aggregates of both charge states. In each plot, the medians were taken with respect to 1000 corresponding discovery
ratios, estimated using that many randomly drawn decoy databases. Each pair of target-decoy databases was searched using two different search
engines: Tide and MS-GF+. In all cases, the scores were calibrated using spectrum-specific empirical distributions constructed from 10K randomly
drawn decoy databases, as described in ref 6. Overall, the graphs are qualitatively similar to the results from the simulated data (Figure 4). The yeast
+2 set has a lower estimated rate of foreign spectra than the corresponding +3 set (e.g., using Tide π0 ̂ = 0.66 for charge 2 but π0 ̂ = 0.83 for charge 3),
which probably explains the larger differences between mix-max and both the STDS and STDS-PIT (cf. Supplementary Figure 5 in the SI).
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calibration has a fairly minor effect, making both T-TDC and
mix-max slightly conservative for moderately large spectrum
sets (≥10K) and small FDR value (<0.01) (Supplementary
Figures 7 and 8 in the SI).
As noted in the Introduction, the use of randomly drawn

decoy sets imparts an undesired variability on the reported list
of discoveries. This is true of all five FDR estimation methods
that we have considered; however, while in the case of mix-max,
STDS, and STDS-PIT this decoy-induced variability manifests
itself only in the selection of the cutoff, in the TDC methods
the variability also causes some high-scoring target PSMs to be
randomly eliminated. To quantify the magnitude of this
phenomenon, we compared the decoy-induced variability of
mix-max and T-TDC using both search engines applied to all
three data sets. The results for Tide (Table 2) show that mix-
max’s list of discoveries exhibits a small but consistent reduced
decoy-dependent variability compared with the list provided by
T-TDC. (The same qualitative result holds for MS-GF+; data
not shown.)

3. DISCUSSION

Introducing the distinction between foreign and native spectra
has allowed us to formulate a theoretical model of decoy-based
FDR estimation for spectrum identification. This model, in
turn, suggests a variety of deficiencies of existing decoy-based
FDR estimation procedures (summarized in Table 3). Perhaps
most significantly, our analysis suggests that the STDS and
STDS-PIT procedures, which were previously proposed by one
of us (Noble), lead to conservative and liberal FDR estimates,

respectively. To address this problem, we therefore proposed
the mix-max procedure, which also employs separate target and
decoy searches. Our theoretical analysis and empirical results
suggest that the mix-max procedure estimates the FDR fairly
accurately for spectrum sets that are larger than 1000−2000
spectra.
On the other hand, when the number of spectra is small, any

of the decoy-based FDR estimation procedures we have
considered face a challenge. For the mix-max procedure, a
small set of spectra implies that the estimation of π0, the
proportion of foreign spectra, might be compromised.
However, our analysis also suggests that T-TDC consistently
underestimates the true FDR for small spectrum sets. To
understand why this is the case, consider a spectrum set made
of a single foreign spectrum. In this case, the true FDR is 1.0,
but it is easy to see that T-TDC will grossly underestimate the
true FDR with probability 0.5. We thus propose that small
spectrum sets present a challenge that requires further research.
The mix-max procedure is only valid in the context of

calibrated scores; however, given the advantages of calibration
in general6 we recommend calibrating whenever it is computa-
tionally feasible, in which case mix-max could be applied. If one
is forced to use uncalibrated scores, then one should use the T-
TDC method, which produces acceptable FDR estimation even
with uncalibrated scores, albeit at a nontrivial loss of power.6

Indeed, this feature is one of the strong suits of target-decoy
competition, as pointed out by Elias and Gygi: the per
spectrum competition with a decoy PSM provides a “built-in”
level of calibration.
Finally, it is worth pointing out that both mix-max and T-

TDC are only asymptotically accurate. Researchers would do
well to remember that for any given set of target and decoy
PSMs the estimated FDR is just thatan estimate which can
deviate from the true FDR by a nontrivial amount. This
deviation (Figure 7) is particularly large for small FDR
thresholds, which are, ironically, typically of most interest to
experimentalists. In practice, this inherent estimation error
should be factored into any downstream analysis.

4. METHODS

4.1. Decoy-Based FDR Estimation Procedures

For a spectrum σ and a peptide ∈ DB, where DB is a peptide
database, let SDB(σ, ) be the score of the match between σ and
in the context of the database DB. Some scores can be invariant

Table 2. Discrepancy in PSM Discoveries Reported by Different Applications of T-TDC and Mix-Maxa

% only in one T-TDC % only in one mix-max

set FDR 0.01 0.05 0.10 0.01 0.05 0.10
yeast 0.05 quantile 0.0 0.1 0.3 0.0 0.0 0.0

median 0.7 0.5 0.7 0.7 0.4 0.4
0.95 quantile 3.1 1.7 2.1 2.9 1.5 1.7

worm 0.05 quantile 0.0 0.0 0.1 0.0 0.0 0.0
median 1.2 0.9 1.3 1.2 0.7 0.9
0.95 quantile 5.7 4.2 4.5 5.6 3.7 3.8

Plasmodium 0.05 quantile 0.0 0.0 0.1 0.0 0.0 0.0
median 0.7 0.3 0.6 0.6 0.2 0.3
0.95 quantile 3.5 1.9 2.3 3.3 1.6 1.8

aFor each of 2000 pairs of applications of T-TDC/mix-max to analyze the Tide searches of the target database, coupled to two independently drawn
decoys, we found the percentage of PSM discoveries (across the two largest charge sets of each species spectra sets) that were reported at the given
FDR by only one of the two T-TDC/mix-max runs. The Table gives the quantiles of these percentages. The results show that mix-max consistently
exhibits less decoy-dependent variability than T-TDC.

Table 3. Comparison of FDR Estimation Methods

C-TDC T-TDC STDS STDS-PIT mix-max

estimates the FDR in an
unbiased fashion

× × ×

estimates the FDR in a
conservative fashion

×

estimates the FDR in a
liberal fashion

×

includes decoys PSMs in
the list of discoveries

×

excludes a random
subset of high-scoring
correct target PSMs

× ×

requires calibrated
scores

× × ×

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00081
J. Proteome Res. 2015, 14, 3148−3161

3155

http://dx.doi.org/10.1021/acs.jproteome.5b00081


with respect to the database DB (e.g., Xcorr), whereas others
can depend on DB, for example, through the number of
candidate peptides (e.g., E values). We assume that SDB(σ, ) is
invariant of the spectrum set Σ from which σ came.
Given a target peptide database db and a set of observed

spectra Σ = {σi: i = 1, ..., nΣ}, let Σ1 be the set of “native” spectra
σ ∈ Σ, which were generated by a peptide GP(σ) ∈ db and let
Σ0 := Σ\Σ1 be the “foreign” spectra. To simplify our notation,
we assume each native spectrum is generated by at most one
peptide, although this is not an inherent restriction of our
model. We denote by π1 = n1/nΣ the proportion of native
spectra among all spectra in our input data set Σ and by π0 = 1
− π1 the fraction of foreign spectra. (See Table 1 for a summary
of our notation.)
For σi ∈ Σ1 let xi = Sdb(σi,GP(σi)) be the score of the match

between the spectrum σi and the peptide that generated it
GP(σi). For each foreign spectrum σi ∈ Σ0 we define yi =
S(σi,db) = ∈max dbSdb(σi, ) as the score of the best match of this
foreign spectrum to db. Similarly, for σi ∈ ΣI we define yi =

σ∈max db GP\ ( )i Sdb(σi, ) as the score of the best match of σi to the

“random” or irrelevant part of db.
In general, the scores xi and yi depend on some random

effects that are not accounted for in our model of a random
database, so we shall treat them alternatively as unknown
parameters of the problem or as unobserved random variables
Xi and Yi. Unless otherwise stated we do not assume that the Xi
and Yi are identically distributed.
Finally, in the context of this theoretical model we assume

that no ties are observed among the competing top scores xi
and yi (and later zi as well): xi ≠ yi for all i. This assumption can
be justified either by assuming the scores are sampled from a
jointly continuous distribution or by breaking ties using a (fair)
coin flip.
A false positive or a false discovery at threshold T occurs

when either σi ∈ Σ1 and yi > max(xi,T), or σi ∈ Σ0 and yi >
T.We summarize this as yi > max(xi,T) where xi := −∞ for σi ∈
Σ0.
Note that while xi and yi are unobservable, wi := max(xi,yi) is

observable because it is the score of the optimal match to σi in
the target database db (loosely referred to here as the “target
PSM” or “target PSM score”). Hence, the number of
“discoveries” D := |{i: wi > T}| is also observable but F, the
number of false positives/discoveries, is not.
We are interested in gauging F/D, the FDR in our target list

of discoveries. Elias and Gygi refer to a closely related figure

(see later) as the “false-positive rate.” We avoid this term here
because it is also used for the p value of the match between a
single spectrum against a random database. Below, we compare
several methods of estimating F/D.

C-TDC. In their 2007 paper, Elias and Gygi suggest that
instead of estimating the error rate F/D in the target database
db we estimate a related error rate, FC/DC, where FC and DC are
the analogues of F and D with respect to the concatenated
database db⊕ dc. Here dc is the decoy database, which is of the
same size as db and can be thought of as a particular sample
from our null distribution of random databases.
To rigorously define the Elias and Gygi (C-TDC) procedure,

we introduce the random variables Zi := S(σi,dc) =
∈max dcSdc(σi, ), where σi ∈ Σ. A false positive in the

concatenated search occurs if max(yi,Zi) > max(xi,T), and we
define FC as the (unknown) number of false positives we
encounter in this search. The number of discoveries DC = |{i:
max {Wi,Zi} > T}| is obviously observable; therefore, estimating
FC is essentially equivalent to estimating FC/DC. FC is estimated
by Elias and Gygi as

= ⇒ =̂
̂

F F
F
D

F
D

2
2

C D
C

C

D

C (1)

where

= = | > |F D i Z W T{ : max( , )}i iD D

is the number of (false) discoveries that fall in dc.
Note that, in practice, the list of discoveries provided by the

Elias and Gygi scheme would typically be reduced to those
discoveries that fall within the target database. In other words, it
makes sense to throw out all FD decoy discoveries, leaving us
with a filtered set of discoveries that has

= | > | = −D i W Z T D F{ : max( , )}i iT C D (2)

PSMs in it.
T-TDC. The list of discoveries reported by T-TDC is a

subset of the list reported by C-TDC, consisting only of the
PSMs from the target database. The T-TDC estimator of the
FDR in this list is defined as

‐ =
F
D

T TDC : D

T (3)

where FD is the number of decoy discoveries in the
concatenated search.

Figure 7. Accuracy of estimated FDR in simulated data. Each panel plots, as a function of estimated FDR, the 0.05/0.5/0.95 quantiles of the
logarithm of the ratio between the actual FDR and the mix-max (magenta) or the T-TDC (black) estimated FDR. The data are the same as in Figure
3. As expected, the estimated FDR converges to the true value as the number of spectra increases; however, for sets of 1K spectra and FDR of 0.05,
the mix-max or T-TDC estimated FDR can easily be ±50% off the true value, and even for sets of 30K spectra the estimated FDR can be roughly
±20% off.
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STDS and STDS-PIT. Kal̈l et al. propose two methods for
estimating the FDR.5 In the first, which we call “separated
target-decoy search” (STDS), they estimate the number of false
discoveries that exceed score T as the number of decoy PSMs
that exceed that score: |{i: zi > T}|. This estimate is unbiased
only if we assume there are no native spectra because the
estimate gauges the number of false discoveries by counting the
number of discoveries among spectra that are entirely foreign by
definition. Hence, in general, STDS is overestimating the FDR,
which it estimates as

=
| > |
| > |

̂F
D

i z T
i w T

{ : }
{ : }

i

i (4)

Arguing along similar lines, Kal̈l et al. also noted that STDS
should, in general, be conservative; hence, they proposed to
correct the method by estimating what they termed the
“percentage of incorrect target” or PIT, which is the
(unknown) number of all false target identifications divided
by the number of spectra. Note that this is not the same as the
fraction of foreign spectra: some of the native spectra PSMs are
typically also false.
Specifically, implicitly assuming a calibrated score, Kal̈l et al.

use the decoy PSMs {zi} to estimate the p values of {wj}, the set
of optimal target PSMs scores. Subjecting these estimated p
values to the standard FDR analysis of Storey,17 they estimate
their PIT by identifying it with π0 the proportion of true null
hypotheses among the set of target PSMs; however, the p
values of these target PSMs are computed based on the
empirical CDF compiled purely from decoy scores; hence,
these p values are computed relative to the null hypothesis that
the spectrum is foreign. Thus, π0̂ estimates the fraction of
foreign spectra rather than the PIT as claimed. For more on this
point, see Supplementary Note 2 in the SI.
Regardless, Kal̈l et al. then use this estimate to adjust the

STDS estimate with the following FDR estimate, which we
refer to as STDS-PIT

π=
| > |
| > |
̂

̂F
D

i z T
i w T

{ : }
{ : }

i

i
0

(5)

In this work we estimated π0 using the R qvalue package
(http://www.bioconductor.org/packages/release/bioc/html/
qvalue.html with the option “smoother” which is equivalent to
the way it is estimated in STDS-PIT.
Note that the difference between STDS (4) and STDS-PIT

(5) is similar to the difference between the Benjamini−
Hochberg’s procedure of controlling the FDR and that of
Storey.17

Note that the previously described version of STDS-PIT is
the original one presented in ref 5. Because of difficulties in
estimating π0 using the standard method (which in hindsight
were mostly due to the use of uncalibrated scores6), in a
followup work Kal̈l et al. proposed estimating π0 using Storey’s
bootstrap method;10,11 however, while, in principle, this is a
theoretically sound approach and indeed the preferred one for
small sets, Kal̈l et al. introduced an undocumented twist to the
estimation that is not theoretically justified. Specifically, the
maximal value of λ was set to 0.5 even though Storey used 0.95
when he originally proposed this bootstrap estimation
method,17 as well as in a closely related variant18 and the
qvalue package itself uses a default of 0.90 for the “bootstrap”
option. Setting the maximal value of λ to 0.5 tends to inflate the
estimation of the proportion of true null hypotheses in the

sample, thereby reducing the liberal bias that is inherent to
STDS-PIT. Thus, the revised method is, in general, less biased
than the one presented here, although this modification is not
theoretically supported. At any rate, it can be shown that even if
the PIT could have been correctly estimated, STDS-PIT would
still show a tendency to be liberally biased.

Mix-Max. If you believe that your PSM score is well
calibrated, then a better scoring PSM should imply a better
match. Therefore, for any desired level of FDR you would
prefer taking all of the target PSMs scoring above the
appropriately computed threshold. The T-TDC procedure,
however, does not allow one to do this because it presents us
with a filtered list of discoveries. The method that we propose
next is therefore preferable for well-calibrated scores because,
like the methods of Kal̈l et al., it is designed to estimate the
FDR in the entire set of target discoveries rather than a filtered
one. Let

σ

σ

= | ∈ Σ > |

= | ∈ Σ > |

F i y T

F i y x T

{ : , }

{ : , max( , )}

i i

i i i

0 0

1 1

be the number of foreign, respectively, native spectra generating
a false positive in the target database (when used on its own).
Clearly, F = F0 + F1 and our mixture-maximum (mix-max)
procedure estimates each term separately.
It is relatively easy to estimate F0 if we adopt the same

homogeneous null assumption of Kal̈l et al. (Zi and Yi are
independent of Xi and share the same null distribution for all i).
Indeed, by applying their method to estimate the proportion of
true null hypothesis π0, which is in fact the fraction of foreign
spectra, we can estimate

∑π π= · · > = ·̂ ̂ ̂̂Σ
=

>

Σ

F n P Z T( ) 1i
j

n

z T0 0 0
1

j
(6)

The following claim motivates our estimator of E(F1):
Claim 1. Let Gi be the cumulative distribution function

(CDF) of Yi (or Zi), which under the homogeneous null
assumption is independent of Xi. Then

∫∑=
<
<σ ∈Σ >

E F
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Proof. Because we assume that Xi and Yi are independent we
have

∫

∫
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>

>
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and since Wi = max(Xi,Yi)
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The claim now follows immediately from

∑= >
σ ∈Σ
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If in addition to the homogeneous null assumption (Zi and Yi
are independent of Xi and share the same null distribution for
all i), we make the reasonable assumption that the random
variables {Xi: σi ∈ Σ1} are identically distributed, then so are the
random variablesWi, and it follows from the previous claim that

∫= ·
<
<>

E F n
P W y
P Y y

G y( )
( )
( )

d ( )
y T

i

i
1 1

(7)

where n1 = |Σ1|, G is the CDF of any Yi, and W refers to any Wi
with σi ∈ Σ1.
The discussion so far assumed there are no ties; however, in

reality, especially if a procedure such as the nonparametric
calibration described in ref 6 is applied, ties will be present. In
the presence of ties, eq7 slightly underestimates the false
discoveries due to the native spectra because it implicitly
resolves all ties in favor of the correct identification (Xi).
Conversely, replacing the strict inequalities of eq 7 with weak
ones as in eq 8 below implicitly resolves ties in favor of the
incorrect identification (Yi) and hence slightly overestimates
the false discoveries due to the native spectra. Following the
standard statistical practice we therefore prefer to use the right-
hand side of eq 8 below rather than risk being too liberal:

∫≥ ·
≤
≤>
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We estimate the right-hand side of eq 8 using the decoy PSM
scores zj, as explained next. Because Z ∼ Y we can estimate
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n
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For Wi with σi ∈ Σ1 we can estimate P(Wi ≤ y) by accounting
for the number of events {Wk ≤ y} that are due to foreign
spectra. Specifically, the latter number can be estimated from
the decoy set because the distribution of Wk for σk ∈ Σ0 is
identical to the distribution of Zk
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where [x][0,1] := max{0, min{1,x}} ensures that x remains an
acceptable probability value. Thus, our mix-max estimator is
defined as

π π
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It is important to stress that the mix-max method explicitly
requires the homogeneous null assumption. (Zi and Yi are
independent of Xi and share the same null distribution for all i.)

Although this is not a realistic assumption when using raw
scores,19 using a calibrated score as suggested here would
essentially satisfy this requirement.
In Supplementary Note 3 in the SI we provide pseudocode

showing how mix-max can be adapted for simultaneously
computing the FDR for all possible thresholds of interest.

4.2. Simulated Data

We performed simulations where we drew nΣ independent
triplets of independent random variables Xi, Yi, Zi with Yi,Zi ≈
N(0,1) (corresponding to the use of calibrated scores). With (1
− π0) being the fraction of native spectra, (1 − π0)·nΣ of the Xi
were drawn from the N(2.5,1) distribution, whereas the other
π0·nΣ of the Xi, corresponding to foreign spectra, were defined
as −∞. We then defined Wi = max{Xi,Yi} as the “target” PSM
score of the ith “spectrum” and Zi as the corresponding “decoy”
PSM score. Note that for the foreign spectra, by our choice of
Xi, Wi = Yi.
We then applied the five FDR estimation methods to the

pairs of target-decoy PSMs, noting the number of discoveries at
a selected set of FDR values as explained in Section 4.5.
Because the data are simulated, we know which target

discovery is correct (Wi = Xi) and which one is incorrect or
false (Wi = Yi). Note that because the data are sampled from a
continuous distribution there are no ties. We therefore kept a
record of the number of false as well as true discoveries at each
of the selected FDR values. Using these data we could readily
calculate the total number of discoveries as well as the actual
FDR at every FDR threshold.
We made one set of experiments where we drew 10K

“datasets” with nΣ = 104 as well as with nΣ = 105 to corroborate
our claim that π0 ̂ estimates the proportion of foreign spectra
rather than the incorrect PSMs. Our main set of experiments
was repeated 10K times each so that we could gauge the
variability in the results. Specifically, the spectrum set sizes we
used were 500, 1K, 10K, 30K, and 70K, and for each size we
drew 10K pairs of target and decoy PSMs as previously
described.
To analyze the effect our nonparametric 10K-decoys

calibration procedure has on FDR estimation, we also
generated data where we added an artificial calibration step.
Because the data were perfectly calibrated to begin with, this
step is not only redundant but also in fact compromises the
perfect calibration the data enjoyed initially. Specifically, for
each “spectrum” (really just an index i) we drew 10K “null PSM
scores” according to N(0,1) and used this 10K sample to
construct an empirical distribution function (ECDF) that was
specific to this spectrum. Next, every drawn score, Xi, Yi, Zi, was
transformed to a p value using the corresponding ECDF
(technically, the score is minus the p value). Note that the
ECDF was drawn only once, so all randomly drawn pairs of nΣ
target-decoy sets of optimal PSMs were transformed using a
fixed set of nΣ ECDFs.
We also conducted another simulation where we increased

the average separation between the native scores Xi and the null
drawn ones Yi,Zi. Specifically, while drawing the null scores
from the same N(0,1) distribution, we increased the mean of
the “correct PSM” scores from μ = 2.5 to 3.0.

4.3. Real Data

Analysis was performed using three previously described sets of
spectra (Table 4). All three data sets and their associated
protein databases are available at http://noble.gs.washington.
edu/proj/calibration.
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The yeast data set was collected from S. cerevisiae (strain
S288C) whole cell lysate.12 The cells were cultured in YPD
media and grown to mid log phase at 30 °C, then lysed and
solubilized in 0.1% RapiGest. Digestion was performed with a
modified trypsin (Promega), and the sample was subsequently
microcentrifuged at 14 000 rpm to remove any insoluble
material. Microcapillary liquid chromatography tandem mass
spectrometry was performed using 60 cm of fused silica
capillary tubing (75 μm I.D.; Polymicro Technologies), placed
in-line with an Agilent 1100 HPLC system and an LTQ ion
trap mass spectrometer. MS/MS spectra were acquired using
data-dependent acquisition with a single MS survey scan
triggering five MS/MS scans. Precursor ions were isolated using
a 2 m/z isolation window. The charge state of each spectrum
was estimated by a simple heuristic that distinguishes between
singly charged and multiply charged peptides using the fraction
of the measured signal above and below the precursor m/z.20

No attempt to distinguish between 2+ or 3+ spectra were made
other than limiting the database search to peptides with a
calculated M+H mass of 700 to 4000 Da. Thus, of the 35 236
spectra, 737 were searched at 1+ charge state, 30 were searched
at 2+ charge state, and the remaining (34 469) were searched at
both 2+ and 3+ charge states.
The worm data set is derived from a C. elegans digest.13 C.

elegans were grown to various developmental stages on peptone
plates containing E. coli. After removal from the plate, bacterial
contamination was removed by sucrose floating. The lysate was
sonicated and digested with trypsin. The digest (4 μg) was
loaded from the autosampler onto a fused-silica capillary
column (75 μm i.d.) packed with 40 cm of Jupiter C12 material
(Phenomenex) mounted in an in-house constructed microspray
source and placed in line with a Waters NanoAcquity HPLC
and autosampler. The column length and HPLC were chosen
specifically to provide highly reproducible chromatography
between technical replicates, as previously described.13 Tandem
mass spectra were acquired using data-dependent acquisition
with dynamic exclusion turned on. Each high-resolution
precursor mass spectrum was acquired at 60 000 resolution
(at m/z 400) in the Orbitrap mass analyzer in parallel with five
low-resolution MS/MS spectra acquired in the LTQ. Bullseye21

was then used to assign charges and high-resolution precursor
masses to each observed spectrum on the basis of persistent
peptide isotope distributions. Because a single precursor m/z
range may contain multiple such distributions, Bullseye

frequently assigns more than one distinct precursor charge
and mass to a given fragmentation spectrum. The final data set
consists of 7557 fragmentation spectra, with an average of 2.10
distinct precursors per spectrum: 1423 +1, 7891 +2, 4646 +3,
1683 +4, and 228 +5. The +5 spectra were discarded from the
analysis.
The Plasmodium data set is derived from a recent study of the

erythrocytic cycle of the malaria parasite Plasmodium
falciparum.14 P. falciparum 3D7 parasites were synchronized
and harvested in duplicate at three different time points during
the erythrocytic cycle: ring (16 ± 4 h postinvasion),
trophozoite (26 ± 4 h postinvasion), and schizont (36 ± 4 h
postinvasion). Parasites were lysed and duplicate samples were
reduced, alkylated, digested with Lys-C, and then labeled with
one of six TMT isobaric labeling reagents. The resulting
peptides were mixed together, then fractionated via strong
cation exchange into 20 fractions, desalted, and then analyzed
via LC−MS/MS on an LTQ-Velos-Orbitrap mass spectrom-
eter. All MS/MS spectra were acquired at high resolution in the
Orbitrap. We focused on one of these fractions (number 10),
consisting of 12 594 spectra, and we discarded 470 spectra with
charge state > +4, leaving 12 124 spectra.
The analysis of the real data was limited to charge sets that

contained at least 2000 spectra, which, in practice, included
exactly the two larger charge sets in each data set: charges 2 and
3 of the yeast data, charges 2 and 3 of the worm data, and
charges 3 and 4 of the malaria data. Results for other charge
states were not included in the analysis.

4.4. Assigning Peptides to Spectra

Searches were carried out using two different search engines:
the Tide search engine16 as implemented in Crux v2.09 and
MS-GF+.7

The yeast spectra were searched against a fully tryptic
database of yeast proteins. The trypsin cleavage rule did not
include suppression of cleavages via proline.22 The precursor
m/z window was ±3.0 Th. No missed cleavages were allowed,
and monoisotopic masses were employed for both precursor
and fragment masses. A static modification of C+57.02146 was
included to account for carbamidomethylation of cysteine. For
Tide, the mz-bin-width parameter was left at its default value of
1.0005079, and PSMs were ranked by the XCorr score. For
MS-GF+, the -inst parameter was set to 0, and no isotope
errors were allowed.
The worm spectra were searched against a fully tryptic

database of C. elegans proteins plus common contaminants.
Searches were performed using the same parameters as for the
yeast data set, except that candidate peptides were selected
using a precursor tolerance of 10 ppm. For MS-GF+, the -inst
parameter was set to 1, and no isotope errors were allowed.
Note that because of the Bullseye processing of the worm
spectra a single spectrum may have be assigned multiple high-
resolution precursor windows with the same charge state. In
such cases, we identified the maximum scoring PSM per charge
state. Eliminating spectra with no Bullseye-assigned precursor
window or no candidate peptides within the assigned precursor
range yielded a total of 9312 worm PSMs.
The Plasmodium spectra were searched against a database of

Plasmodium peptides, digested using Lys-C. In addition to C
+57.02146, static modifications of +229.16293 were applied to
lysine and to the peptide N-termini to account for TMT
labeling. All searches were performed using a 50 ppm precursor
range. For Tide, the mz-bin-width parameter was set to

Table 4. Properties of the Three Data Sets

data set yeast worm Plasmodium

precursor resolution low high high
fragment resolution low low high
+1 spectra 737 1423
+2 spectra 34,499 7891 1311
+3 spectra 34,469 4646 8441
+4 spectra 1683 2372
+1 PSMs 737 241
+2 PSMs 34,499 4494 790
+3 PSMs 34,467 3173 8382
+4 PSMs 1288 2362
enzyme trypsin trypsin lys-c
peptides in database 165,930 462,523 223,602
precursor m/z tolerance ±3 Th ±10 ppm ±50 ppm
fragment m/z bin width 1.0005079 1.0005079 0.10005079
average candidates/spectrum 955.7 22.0 48.7
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0.10005079. For MS-GF+, the -inst parameter was set to 1, and
no isotope errors were allowed. For some spectra, no candidate
peptides occur within the specified precursor tolerance window;
hence, the number of PSMs (11 625) is smaller than the total
number of spectra (12 594).
Decoy databases were generated by independently shuffling

the nonterminal amino acids of each distinct target peptide. For
each database, the decoy creation procedure was repeated
11 000 times, creating a 10K decoy set (used for calibration as
explained next) and an independent 1K decoy set (used for
evaluating the performance of the search methods).
Calibrating the Real Data Scores. We performed

empirical score calibration using our previously described
procedure.6 For each spectrum σ and the target database db as
well as each decoy database dc in the 1K decoy set we replaced
its reported optimal PSM score (XCorr or E value) S(σ,db) (or
S(σ,dc)) with its calibrated score computed using the 10K
decoys. To calibrate the score, we searched each spectrum σ
against each decoy database dc in the 10K decoy set, and the
optimal PSM for that database z = S(σ,dc) was noted. (We
loosely refer to it as the decoy PSM.) We next used this null
sample of N = 10 000 decoy PSM scores {zi}i=1

N to construct a
spectrum-specific empirical null distribution. This distribution
was used to assign the per-spectrum p value to any PSM s =
S(σ,DB) involving the considered spectrum σ and a database
DB. The calibrated score is the negative of the value. For each
data set, the spectra were divided by charge state, and the
previously described procedure was carried out separately on
each of the resulting sets of spectra.

4.5. Number of Discoveries

Number of Discoveries at a Given FDR. The number of
discoveries at a given FDR level α was defined as the largest
number of discoveries reported by the method for which the
estimated FDR was still ≤α. For computational efficiency we
only computed this number for 120 selected values of α: from
0.001 to 0.01 in increments of 0.001, from 0.012 to 0.05 in
increments of 0.002, and from 0.055 to 0.5 in increments of
0.005.
Evaluating the Differences in Discovery Lists. The

differences in the discovery lists between methods A and B
were evaluated at a given FDR level α ∈ {0.01,0.05,0.1,0.2} as
follows. First, we identified the largest discovery list reported by
each method for which the FDR was still ≤α. Then, the two
lists were compared to see which PSMs appear only in A and
not in B and vice versa. Finally, the number of PSMs present
only in A’s list was expressed as a percentage of the total
number of PSMs in this list (and vice versa).
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