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Shotgun proteomics uses liquid chromatography–tandem mass

spectrometry to identify proteins in complex biological samples.

We describe an algorithm, called Percolator, for improving the

rate of confident peptide identifications from a collection of

tandem mass spectra. Percolator uses semi-supervised machine

learning to discriminate between correct and decoy spectrum

identifications, correctly assigning peptides to 17% more spectra

from a tryptic Saccharomyces cerevisiae dataset, and up to 77%

more spectra from non-tryptic digests, relative to a fully

supervised approach.

Mass spectrometry has become the most widely used tool
for the characterization of proteins within complex mixtures.
Integral to the broad acceptance of mass spectrometry for
protein characterization has been the development of database
searching software such as SEQUEST1 and MASCOT2.
These algorithms assign a peptide sequence to each tandem
mass spectrometry (MS/MS) spectrum by comparing experimen-
tally acquired spectra against theoretically predicted spectra
of peptides derived from a sequence database. Scores reflecting
the similarity between the measured and predicted spectra are
used to discriminate between correct and incorrect peptide
sequence assignments.

Although database searching algorithms work well, there remains
substantial room for improvement. In particular, current scoring
methods produce significant overlap between the scores of correct
and incorrect peptide identifications3,4. Thus, to ensure that a large
fraction of the true positive identifications are retained, a score
threshold must be selected such that a percentage of the peptide
identifications are incorrect.

To estimate the number of false positive protein identifications
in a more systematic fashion, an approach using a decoy data-
base containing reversed protein sequences was developed5. Since
this initial application, many other researchers have used decoy
searches to estimate the number of incorrect peptide-spectrum

matches (PSMs) that exceed a given threshold6. This approach
allows the user to adjust the score threshold to obtain a target false
discovery rate.

Because most database search algorithms return multiple scores
(for example, XCorr, Sp, and DCn for SEQUEST), most proteomics
studies apply separate thresholds to each score. Using multiple
orthogonal score criteria is useful for eliminating false discoveries
that might exceed one threshold but not another. However, in
most cases these orthogonal scores are considered independently,
ignoring the benefits that can be obtained if the features are
considered jointly.

An alternative approach is to use machine learning methods to
re-rank the PSMs and then set a threshold automatically in the re-
ranked list4,7. This approach uses a supervised classification algo-
rithm to discriminate between correct and incorrect PSMs. Each
PSM is characterized by a fixed-length vector of features, and the
relative weights of the individual features are learned from a training
set of manually curated PSMs. This approach provides substantially
greater confidence in peptide identification than using SEQUEST
alone; however, obtaining a high-quality training set is complicated.
Furthermore, the characteristics of correct and incorrect PSMs vary
from laboratory to laboratory and from one experiment to the next.
Sample type (for example, soluble versus membrane proteins),
enzyme specificity, modified versus unmodified peptides, mass
spectrometer type, database size, instrument calibration and other
parameters alter the optimal weighting of features. Unfortunately, it
is impractical to generate a high-quality training set for every
anticipated micro liquid chromatography–MS/MS analysis.

In this study, we describe a solution to these problems that uses a
software post-processor that can be appended to any existing
database search algorithm. The algorithm, called Percolator, uses
a semi-supervised learning method that eliminates the need to
construct a manually curated training set. The PSMs derived from
searching a decoy database consisting of shuffled protein sequences
are used as negative examples for the classifier, and a subset of the
high-scoring PSMs derived from searching the target database are
used as positive examples. Percolator trains a machine learning
algorithm called a support vector machine (SVM)8 to discriminate
between positive and negative PSMs. One benefit of the semi-
supervised learning paradigm is that the classifier is free to exploit
a variety of specific features of the data, without overfitting to
a particular type of spectrum. Percolator represents each PSM using
a rich vector of 20 features. These features, as well as a detailed
description of the algorithm, are provided in Supplementary
Table 1 and Supplementary Methods online.

Percolator is fully automated and significantly improves the
sensitivity of existing database search algorithms at a constant
false discovery rate. Furthermore, Percolator assigns a statistically
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meaningful q value to each spectrum, which is defined as the
minimal false discovery rate at which the identification is deemed
correct9. These q values are estimated using the distribution of
scores from the decoy database search.

We measured Percolator’s ability to identify correct PSMs using a
yeast dataset containing 35,236 spectra. These data were acquired
from a tryptic digest of an unfractionated S. cerevisiae lysate and
analyzed using a 4-h reverse-phase separation. We assigned pep-
tides to spectra by using SEQUEST with no enzyme specificity,
allowing multiple charge states for some spectra (see Supplemen-
tary Methods); this yielded 69,705 target PSMs. The SEQUEST
analysis required B3 d on an Athlon MP Opteron 842 CPU. The
subsequent Percolator analysis required B4 min on the same CPU.
The results (Fig. 1a) show that Percolator markedly improved upon
the initial SEQUEST scoring function. Unless otherwise specified,
we consider a PSM to be correct if it achieves a q value o0.01. In
this case, Percolator correctly identified 12,691 PSMs, correspond-
ing to 8,197 unique peptides and 1,630 proteins. The number of
proteins was computed using DTASelect10, requiring one peptide
per locus and removing ‘subset’ proteins. At the same q value,
SEQUEST identified only 2,780 PSMs using XCorr alone.

We tried a number of methods for improving the performance of
SEQUEST on this dataset. First, we filtered the SEQUEST identi-
fications to allow only tryptic peptides. The results (cyan curve in
Fig. 1a) were much better than the initial SEQUESTranking (8,602
PSMs) but still not as good as those of Percolator. We also applied
several published post-processing methods to the SEQUESTresults.
One heuristic11 identified 7,926 PSMs at a q value of 0.054. At this
same q value, Percolator identified 13,982 PSMs. Using default
thresholds, DTASelect10 identified 7,583 PSMs at a q value of 0.18,
and 7,094 PSMs at a q value of 0.0057 when using only fully tryptic
peptides. Finally, PeptideProphet4, which uses linear discriminant
analysis with a fixed set of coefficients, produced results that were
better than SEQUEST’s; however, even when restricted to tryptic
peptides, PeptideProphet consistently identified fewer PSMs than
Percolator. For example, at a q value of 0.01, Percolator identified
17% more PSMs (12,691 versus 10,863) and 15% more unique
peptides (8,197 versus 7,120) than did PeptideProphet. Thus, none
of the available algorithms that we tested identified as many
peptides as Percolator.

Next, we tested a variant of the Percolator algorithm that re-
ranks potential false negative identifications (Supplementary
Methods). Rather than considering only the top-ranked SEQUEST

PSM for each spectrum, Percolator scores the top five PSMs. The
results (blue curve in Fig. 1a) were better than when Percolator was
applied to only the top-ranked PSM. At a q value of 0.01, the re-
ranking procedure produced 8% more PSMs relative to Percolator
without re-ranking. We also investigated Percolator’s behavior on a
larger dataset, a 24-h MudPIT analysis of Caenorhabditis elegans
proteins containing 207,804 spectra (Supplementary Data).

The primary advantage of re-training the classifier for each
individual dataset, as we do with Percolator, is that we do not
have to make the classifier general enough to handle all types of
possible spectra. We thus expect Percolator’s strength relative to
PeptideProphet to be most apparent when the dataset being
analyzed differs substantially from the dataset that was used to
train PeptideProphet. We therefore ran Percolator on yeast sets
digested with elastase (Fig. 1b) and chymotrypsin (Fig. 1c).
As expected, Percolator’s performance on these datasets improved
relative to that of PeptideProphet, even though we ran Peptide-
Prophet in its ‘‘elastase’’ and ‘‘chymotrypsin’’ modes, respectively.
At a q value of 0.01, Percolator yielded 77% more PSMs and 48%
more unique peptides in the elastase set and 58% more PSMs and
34% more unique peptides in the chymotrypsin set than did
PeptideProphet. We performed a variety of control experiments
to verify Percolator’s performance and assess its robustness (Sup-
plementary Data, Supplementary Figs. 1, 2 and 3 and Supple-
mentary Table 2 online).

SEQUEST is quite robust in assigning the correct peptide
sequence from candidate sequences in a database. Nevertheless,
there are occasions when the best peptide sequence is not ranked
first using XCorr. In selected cases, Percolator can correct an
incorrectly ranked peptide sequence obtained using XCorr alone.
Figure 2 illustrates an example in which Percolator correctly re-
ranked the resulting PSMs. SEQUEST returned the sequence
INSLNDSNLSIPE with an XCorr of 2.99 (Fig. 2a; the predicted
b- and y-ion fragment ions are highlighted in red in the MS/MS
spectrum). Several intense fragment ions were not accounted for
by this peptide, indicating that this might not be a correct match.
In contrast, Percolator assigned a q value of 0.95 for this peptide,
but it assigned a better score (q value ¼ 0) to SEQUEST’s second-
ranked peptide (LGANAILGVSMAAAR, XCorr ¼ 2.87; Fig. 2b). In
comparison to the sequence ranked first by SEQUEST, the pre-
dicted b- and y-ions from Percolator’s top-ranked peptide
accounted for a much larger fraction of fragment ions. We
confirmed Percolator’s top-ranked peptide assignment by acquiring
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Figure 1 | Comparison of SEQUEST post-processing methods. The figure plots the number of identified PSMs as a function of the q value. (a–c) The data consist

of 69,705 PSMs from yeast proteins digested with trypsin (a), 57,860 PSMs from yeast proteins digested with elastase (b) and 60,217 PSMs from yeast digested

with chymotrypsin (c). In a the blue circle and blue triangle correspond to applying, respectively, the heuristic described previously11 and the default DTASelect

thresholds10 to the SEQUEST output.
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an MS/MS spectrum of a synthetic analog of the peptide. Percolator
can also be used for the interpretation of spectra containing
multiple peptides (see Supplementary Fig. 4 and Supplementary
Methods online for further discussion).

We have described a statistically rigorous, computationally effi-
cient machine learning method for increasing the number of
confident peptide identifications from tandem mass spectra. The
Percolator algorithm can be applied as a post-processor to a
collection of target and decoy PSMs produced by any database
search algorithm. We show that this approach improves the rate of
peptide identification relative both to a static search procedure and
to a fully supervised post-processing method. The improvement is
greatest for non-tryptic digests, for which existing methods are not
optimized. The test data used in this report are available in
Supplementary Data 2 online. The test data used in this report
are available in Supplementary Data 2 online. The software,
including source code, is freely available for nonprofit use. The

data used in the manuscript and information about obtaining
the software are available online (http://noble.gs.washington.edu/
proj/percolator).

Note: Supplementary information is available on the Nature Methods website.
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Figure 2 | A peptide that was re-ranked by Percolator. (a) The peptide that

was returned with the highest XCorr by SEQUEST. The peptide is a non-tryptic

peptide for which only a fraction of the total ion current is accounted for by

the predicted b- and y-ions (labeled in red) and associated neutral losses

(labeled in yellow). (b) The peptide was chosen by Percolator as the best-

matching sequence for this spectrum. The predicted b- and y-ions from the

peptide (labeled in blue) account for a significantly greater amount of the

total signal in the spectrum. The peaks in the mirror image (b, below) are

from a spectrum acquired on the purified peptide produced synthetically.

Although there are a few chemical noise peaks unaccounted for in the

spectrum acquired from the endogenous peptide, this is not unusual for

spectra acquired in the context of an unfractionated mixture. The relative

abundances of the peaks obtained for the endogenous and synthetic peptides

are very similar and are indicative of a high-quality match.
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