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A widespread proteomics procedure for characterizing a
complex mixture of proteins combines tandem mass
spectrometry and database search software to yield mass
spectra with identified peptide sequences. The same
peptides are often detected in multiple experiments, and
once they have been identified, the respective spectra can
be used for future identifications. We present a method
for collecting previously identified tandem mass spectra
into a reference library that is used to identify new spectra.
Query spectra are compared to references in the library
to find the ones that are most similar. A dot product
metric is used to measure the degree of similarity. With
our largest library, the search of a query set finds 91% of
the spectrum identifications and 93.7% of the protein
identifications that could be made with a SEQUEST
database search. A second experiment demonstrates that
queries acquired on an LCQ ion trap mass spectrometer
can be identified with a library of references acquired on
an LTQ ion trap mass spectrometer. The dot product
similarity score provides good separation of correct and
incorrect identifications.

Shotgun proteomics has emerged as a robust and sensitive
approach to profile the protein complement in a complex biological
sample.1 In this approach, a sample for analysis is prepared by
digesting a protein mixture with proteases to yield a mixture of
peptides. The peptides are then loaded onto a microcapillary
chromatography column in-line with a mass spectrometer. Tan-
dem mass spectra are acquired data-dependently as peptides are
eluted off the column, ionized, and emitted into the mass
spectrometer.1,2 Finally, the identity of a peptide in the mixture is
determined by comparing an acquired tandem mass spectrum to

predicted spectra generated from amino acid sequences drawn
from a databasesan approach known as database searching.3 This
shotgun approach for identifying proteins in mixtures is extremely
powerful and makes possible the characterization of thousands
of proteins from a single 24-h mass spectrometry run.

Database searching has been invaluable for automating the
characterization of uninterpreted tandem mass spectra and
facilitating high-throughput proteomics; however, there remains
room for improvement. First, database search algorithms make
assumptions about how peptides fragment within the mass
spectrometer. Although these assumptions allow for the correct
identification of most peptides, better prediction of peak intensities
could accommodate the identification of more peptides and
introduce fewer false identifications. Second, most algorithms
analyze protein modifications by iterating over all possible
combinations of modified and unmodified residues in a peptide
sequence. While effective, this approach is slow and impractical
for considering multiple modifications for every sample analyzed.
A search algorithm that made use of previously characterized mass
spectra could address both of these limitations.

This type of approach has been used successfully for other
types of mass spectra. For example, electron impact mass spectra
are often identified based on comparisons to other experimentally
generated spectra of known identity. These comparisons are
robust largely because the conditions for acquiring the data have
been standardized, making results highly reproducible across
different laboratories and instruments. As a result of this repro-
ducibility, large curated reference libraries have been developed
for use by the general mass spectrometry community. Similarly,
the development of normalized collision energy on quadrupole
ion trap mass spectrometers has led to standardization in collect-
ing spectra from collision-induced dissociation (CID). The repro-
ducibility of CID spectra has facilitated the use of library searching
for characterizing small molecules and peptide tandem mass
spectra. One implementation, LIBQUEST,4 uses a cross correlation
to measure similarity between spectra. Alternatively, the dot
product has been successfully used to find similar peptide spectra
in clustering algorithms5,6 and is also used in the search software
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for the NIST library, which has recently been extended to include
peptide spectra.

Just as database searching is limited to available protein
sequences, library searching is limited to previously characterized
spectra in an available library. High-throughput sequencing and
protein prediction algorithms have provided ample protein se-
quence for database searches. Likewise, high-throughput pro-
teomics experiments produce abundant spectra, which can be
used as references. Modern mass spectrometers are capable of
acquiring tandem mass spectra at a rate of 3-5 Hz resulting in
250 000-430 000 spectra per day. Rapid acquisition combined with
computer clusters for database searching7,8 allow even small
laboratories to quickly amass a vast number of characterized
spectra suitable for inclusion in a reference library. Furthermore,
there already exists a rich supply of characterized peptide mass
spectra in public data sets that can easily be assembled into
publicly available libraries for peptide identification. The viability
of using previously identified peptides as the basis of a search
has already been demonstrated with the Proteotypic Peptide
Profiling (P3) program.9 As with database searching algorithms,
P3 stores peptide sequences to use for identifying spectra, and
like a spectrum library, it limits the basis of the search to
previously observed peptides.

We have developed a method for assembling and searching
tandem mass spectrum libraries. The libraries are stored in a
compact binary format that is easily updated and shared between
laboratories. In this report, we assemble a large library and
demonstrate that it can be searched more efficiently than current
database searching programs with no loss of sensitivity or
specificity. Additionally, we identify previously characterized
posttranslationally modified peptides without increasing the
analysis time. Finally, we demonstrate that the library search can
be used to compare spectra acquired on different instrument
models in different laboratories. The spectrum libraries and the
software for compiling and searching libraries has been made
freely available for noncommercial use. Information about obtain-
ing both can be found at http://proteome.gs.washington.edu.

METHODS
Protein Sources. Peptide mass spectra were acquired using

protein from two sources, Caenorhabditis elegans and Escherichia
coli cell lysates. Protein extracts from whole-worm lysate of C.
elegans were biochemically fractionated by either solubility,
density, charge, hydrophobicity, or molecular weight. Each
method yielded 9-10 fractions, and each fraction was digested
to peptides with trypsin. Soluble proteins from E. coli lysate were
separated by centrifugation and digested with trypsin.

Chromatography and Mass Spectrometry. C. elegans MS/
MS spectra were acquired on an LTQ linear ion trap mass
spectrometer (ThermoFinnigan, San Jose, CA) using either a 12-
step multidimensional protein identification technology (MudPIT)

protocol10 or one-dimensional reversed-phase chromatography as
described below. Samples were injected onto the column with an
Agilent 1100 quaternary HPLC (Palo Alto, CA). Peptides eluting
off the column electrosprayed directly into an LTQ mass spec-
trometer, and MS/MS spectra were acquired using data-depend-
ent acquisition.

E. coli spectra were acquired on both an LTQ and an LCQ-XP
Max ion trap mass spectrometer (ThermoFinnigan). The LTQ data
were acquired identically to the C. elegans data. For the LCQ data,
samples were loaded onto a single-phase (C18) microcapillary
column and electrosprayed directly into the mass spectrometer.

BiblioSpec Software. All software were written in the C++
programming language and compiled on a Linux operating system.
The software package BiblioSpec consists of several independent
programs, each of which is described below. The three main
programs are BlibBuild, which creates a spectral library of mass
spectra, BlibFilter, which modifies an existing spectrum library
to contain only one spectrum per peptide, and BlibSearch, which
matches query spectra to library spectra.

Libraries are constructed from peptide MS/MS spectra that
have previously been matched to peptide sequences, for example,
using a database search program (e.g., SEQUEST,3 Mascot11). The
user prepares a list of spectra to be included in the library with
the charge and sequence assigned to each as well as the file where
the spectrum can be found. BlibBuild takes this list as input and
extracts peak and precursor mass data from MS212 files. The
collected spectra are sorted by precursor mass, and the new
library is written to a binary file.

If a library contains multiple spectra for some peptide ions, an
additional step can be taken to select the best representative
among these redundant spectra. BlibFilter takes such a library
and measures the similarity of all pairs of spectra for a given
peptide ion. The spectrum with the highest average similarity
score is chosen for inclusion in the filtered library.

The library searching function of BiblioSpec is performed by
the program BlibSearch. It takes as input a library file and an
MS2 file containing query spectra. The search begins by loading
the library into memory. A query spectrum is read from the MS2
file and preprocessed as described in Results and Discussion. A
binary search on the library returns candidate spectra whose
precursor m/z is the same as that of the query spectrum within
a specified tolerance. Each candidate library spectrum is prepro-
cessed and compared to the query using a dot product. The
matches are sorted by score, and the best library matches for
each query spectrum are reported in a text file in SQT file format.12

Library Construction. The peptide identities of spectra used
in the libraries were based on SEQUEST search results and
stringent scoring criteria. All C. elegans spectra were searched
using a database containing all predicted proteins from the
Wormbase 130 freeze,13 the E. coli proteins in RefSeq,14 several
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common contaminants, and a randomized version of each real
protein for use in estimating false positives.15,16 A SEQUEST
identification was deemed correct if it met the following criteria:
normalized Xcorr was at least 0.35, delta CN was at least 0.12,
peptide length was at least seven residues, at least 30% of predicted
b/y ions were accounted for within the spectrum, the peptide was
fully tryptic, and at least one other peptide from the same protein
was identified. Sets of duplicate spectra (i.e., those of the same
peptide ion) were filtered by selecting the one with the highest
average dot product when compared to the others in the set. For
instances of two spectra per ion, the selection was random.

Spectra from each fractionated C. elegans sample were put into
a library. Over 6 million spectra were searched, and 366 400 met
the above threshold criteria for correct identification. An additional
183 spectra had two matches above the threshold, each to a
peptide in a different charge states, and were not included in the
dataset. There were 51 identifications made to randomized peptide
sequences, suggesting that there are ∼51 false positives in the
library. After filtering duplicates, the library contained 26 708
spectra representing 21 264 unique peptide sequences. These
sequences come from 3573 different proteins.

A second library was constructed from the E. coli spectra
collected on the LTQ. Peptide identifications were made with
SEQUEST using a database containing all E. coli proteins,
common contaminants, and a randomized version of each real
protein. The same criteria used for the C. elegans identifications
were applied to the E. coli results with two exceptions. The
minimum normalized Xcorr was relaxed to 0.3 and minimum delta
CN was 0.1. Over 200 000 spectra were searched and 40 521
spectra were identified. These were filtered to yield 8451 spectra
representing 6864 peptide sequences and 1177 proteins. There
were also 23 matches to randomized sequences.

The third library consisted of the C. elegans library plus seven
spectra that were identified as having posttranslational modifica-
tions. SEQUEST was used with the differential modifications
option to search for oxidized methionine and phosphorylated
serine on a set of spectra acquired from an unfractionated C.
elegans sample. The peptide identifications were manually verified.
Four spectra had a single oxidized methionine, two had a single
phosphorylation, and one spectrum had two phosphorylated
residues.

Query Test Sets. One test set of query spectra was taken from
the unfractionated C. elegans sample not used in the library.
Peptide identifications were made with SEQUEST using the same
sequence database as above and using similar threshold criteria.
The criteria differed in that the minimum Xcorr and delta CN were
relaxed to 0.3 and 0.1, respectively. The query set contained 14 925
spectra from 5358 different peptide ions (907 of which are not
present in the library). There were also two matches to random-
ized sequences. These peptides come from 1261 proteins.

A second test set was taken from the E. coli spectra acquired
on the LCQ. A SEQUEST search with the same database used
for the library and with the same criteria as for the other query
set identified 924 spectra from 353 different precursor ions. There
were no matches to randomized sequences with these criteria.

RESULTS AND DISCUSSION
We have developed a method for constructing and searching

peptide mass spectrum libraries for high-throughput proteomics.

One goal for such libraries is to serve as a convenient means for
laboratories to share proteomics data. Therefore, the libraries are
designed to be compact, easily assembled, and quickly updated.
The libraries should also provide a searchable set of reference
data for assigning peptide sequences to uncharacterized tandem
mass spectra. A search produces a list of candidate matches for
each query, with an associated score measuring similarity between
the matched spectra. The search algorithm is designed to
maximize speed while retaining good sensitivity and specificity.

The library format was structured with size and search
efficiency in mind. To minimize disk space, we implemented a
binary data storage format rather than a text format (e.g., MS2,
mzXML). A library of 18 906 spectra takes up 111M of disk
storage: 33% of a conventional MS2 file and 56% of an mzXML
file of those same spectra. BiblioSpec software supports adding
spectra to an existing library, merging libraries, and viewing
library contents in a text format, making it easy to incorporate
data from different experiments and different laboratories.

Our criteria for a successful library searching algorithm are
that it be fast, return a majority of the identifications that a
database search would, and that it assign scores with good
discrimination between correct matches and false positives. The
speed of the search was optimized by limiting the number of
spectrum comparisons made, by finding candidate spectra quickly,
and by using an efficient comparison technique. Comparisons were
limited to library spectra with a precursor m/z within 3 m/z of
the query spectrum and with the same charge state. The library
stores spectra ranked by precursor m/z so that candidates can
be efficiently located with a binary search. The dot product metric
(sometimes referred to as the spectral contrast angle17) employed
for comparing two spectra is more computationally efficient than
a cross correlation and still provides a reliable measure of
similarity.17,18

Peak Preprocessing and Parameter Optimization. The
inherent noise and variability of spectra is accounted for by making
adjustments to spectrum peaks prior to calculating similarity
scores. Since there is no standardized method of peak preprocess-
ing, we tried several combinations of reported normalization steps
to learn what works best for our data set. However, the BiblioSpec
software allows the user to modify these parameters as desired.
Adjustments fall into three categories: binning peaks by m/z,
normalizing peak intensities, and removing low-intensity noise
peaks. The binning method is unvaried and involves merging
peaks into bins of 1 m/z by summing the intensities of multiple
peaks falling into the same bin.

We tried three different methods of peak normalization and
two different methods of removing noise peaks. Peak normaliza-
tion was done variously by taking the square root of peak
intensities (SQRT),5 by weighting the square root of the intensity
by the square of the peak m/z (SMZ),17 or by separating the peaks
into 10 bins equally spaced across the spectrum’s range of peak
m/z’s and dividing the intensity of each peak by the maximum
peak intensity for its bin (BIN).3 To remove noise from a spectrum,
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the peaks were ranked by intensity, and two different metrics were
used to define the cutoff between the high-intensity signal peaks
and the low-intensity noise peaks. The cutoff was either based on
the number of high-intensity peaks to retain (TOP n)3 or on the
cumulative intensity equaling some fraction of the total ion current
(FC x).5 We chose to consider TOP n where n equaled 50, 100,
200, or 300 and FC x where x equaled 0.5. These two steps could
be completed in either order, peak intensity normalization first
(IF) or noise removal first (NF).

Twenty-five different combinations of preprocessing steps were
compared on a search of a small library and test set, and the area
under a receiver operator characteristic (ROC) curve was calcu-
lated for each (Table 1). The top two methods (SMZ-TOP50-IF
and SMZ-TOP100-NF) had calculated areas of 0.992 and 0.991.
Given the closeness of these scores, we chose to use the second-
ranked method for the remaining searches with the belief that
using 100 instead of 50 peaks would facilitate the identification of
longer peptides.

Filtering Comparison. We examined three different ways of
choosing a representative from multiple spectra for the same
peptide ion. The representative spectrum was chosen as the one
with the highest total ion current, the highest Xcorr obtained from
a SEQUEST search, or the highest average dot product when
compared to all other spectra of the same ion. Three different

filtered libraries were generated from the same set of spectra,
each selecting among redundant spectra in a different way. All
25 methods of preprocessing were tested on each library. The
top four scoring methods are summarized in Table 2. Dot product
filtering gave the best results and was the method used for the
libraries used in further experiments.

Search Verification. Ideally, a search with a comprehensive
library of tandem mass spectra will produce as many correct
identifications as a database search. To test this ability, we used
SEQUEST to find peptide identifications for a set of spectra and
searched a library for identifications to the same spectra to see if
BiblioSpec could reproduce the SEQUEST assignments. Bib-
lioSpec found 91% (13 591) of the peptide identifications assigned
by the database searching program, SEQUEST, and 93.7% of the
proteins. The BiblioSpec scores ranged from 0.067 to 0.989 (Figure
1). For most of the BiblioSpec identifications that did not agree
with the SEQUEST results, the respective peptide spectrum was
not present in the library. Only 7% (98) of the 1334 incorrectly
identified spectra had the correct spectrum in the library.

We used the SEQUEST peptide identifications as the standard
and considered BiblioSpec identifications that agreed with the
SEQUEST scores to be correct and those that disagreed to be
incorrect. To judge how well the BiblioSpec score distinguishes
between correct and incorrect matches, we plotted a ROC curve
and calculated the area under it to be 0.978 (Figure 1). By setting
an appropriate cutoff value for the similarity score, we can identify
most of the correct matches without introducing many false

Table 1. Results from Different Spectrum
Preprocessing Methodsa

intensityb noise reduction order ROC score

SMZ top 50 IF 0.991 834
SMZ top 100 NF 0.991 486
SMZ FC IF 0.988 697
SMZ top 200 NF 0.988 194
BIN 10 top 100 NF 0.988 087
SMZ top 100 IF 0.987 283
SMZ top 200 IF 0.986 109
SMZ top 50 NF 0.985 885
SMZ top 300 NF 0.985 609
BIN 10 top 200 NF 0.985 278
SMZ top 300 IF 0.983 804
BIN 10 top 50 IF 0.982 509
BIN 10 FC IF 0.981 097
SQRT top 50 NF 0.980 661
BIN 10 top 100 IF 0.980 295
BIN 10 top 300 IF 0.978 778
SQRT top 100 NF 0.978 732
BIN 10 top 200 IF 0.977 687
BIN 10 top 50 NF 0.976 924
BIN 10 top 300 NF 0.976 626
SQRT top 300 NF 0.976 08
SQRT FC IF 0.975 63
SQRT top 200 NF 0.975 081
BIN 10 FC NF 0.963 484
SMZ FC NF 0.946 539
SQRT FC NF 0.944 237

a The columns from left to right are the type of peak intensity
normalization, the type of noise reduction, the order in which the two
steps were performed, and the area under the ROC curve. b Intensity
normalization was done by taking the square root of the peak intensities
(SQRT), by weighting the square root of the intensity by the square
of the peak m/z (SMZ), or by dividing the peaks into 10 bins and
dividing each peak by the maximum-intensity peak in the bin (BIN).
To separate noise from signal, the peaks were ranked by intensity and
either a fixed number of the highest intensity peaks were retained (top)
or the highest intensity peaks that summed to a fraction of the total
ion current (FC) (in this case, a half) were retained. These steps could
be done in either order, normalizing intensity first (IF) or removing
noise first (NF).

Table 2. Comparison of Library Filtering To Remove
Duplicate Spectraa

intensityb noise reduction order ROC score

Dot Product Filtered
SMZ top 50 0.990 453
SMZ top 200 NF 0.987 918
SMZ top 100 0.987 876
SMZ top 100 NF 0.986 199

Ion Current Filtered
SMZ top 50 NF 0.964 234
SMZ top 100 NF 0.953 969
BIN 10 top 50 NF 0.952 338
SMZ top 50 0.950 816

Xcorr Filtered
BIN 10 top 50 IF 0.982 509
BIN 10 top 100 IF 0.980 295
BIN 10 top 200 NF 0.985 278
BIN 10 top 100 NF 0.988 087

a A spectrum library was filtered using three different methods of
selecting the representative spectra. The three resulting filtered
libraries were searched using various preprocessing methods. The top
four preprocessing methods for each type of filtering are presented.
The first set of results are from the library filtered by dot product, the
second from the library filtered by total ion current, and the third are
from the library filtered by Xcorr. The columns from left to right are
the type of peak intensity normalization, the type of noise reduction,
the order in which the two steps were performed, and the area under
the ROC curve. b Intensity normalization was done by taking the square
root of the peak intensities (SQRT), weighting the square root of the
intensity by the square of the peak m/z (SMZ), or by dividing the
peaks into 10 bins and dividing each peak by the maximum-intensity
peak in the bin (BIN). To separate noise from signal, the peaks were
ranked by intensity and either a fixed number of the highest intensity
peaks were retained (top) or the highest intensity peaks that summed
to a fraction of the total ion current (FC) (in this case, a half) were
retained. These steps could be done in either order, normalizing
intensity first (IF) or removing noise first (NF).
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positives. For example, at a threshold with a 1% false-discovery
rate, 93.8% of correct matches are found. With a 5% false-discovery
rate, 99.9% of correct matches are found. The query set contains
a mixture of spectra at three different charge states. We further
examined the discriminatory power of the similarity score for
spectra of each charge state individually. The search results for
singly charged spectra produced an ROC curve with an area of
0.959. For doubly and triply charged spectra, the ROC areas were
0.984 and 0.993, respectively.

For the most part, the BiblioSpec and SEQUEST results agree.
To understand the sources of error, we examined some spectra
for which the two methods did not agree. The errors fell into five
categories: (1) a poor-quality library spectrum, (2) incorrect
SEQUEST identification of the query spectrum, (3) a query
spectrum containing a mixture of peptides, (4) a library spectrum
containing spurious, high-intensity, high m/z peaks, and (5) very
similar reference spectra for different sequences.

We found several cases in which BiblioSpec correctly identified
a spectrum whose sequence was incorrectly assigned by SE-
QUEST. This is not surprising, because all library spectra were
identified using SEQUEST, which has a measurable false-positive
rate. Based on matches to randomized sequences, the library is
estimated to contain 51 incorrect identifications. Even with a high
degree of similarity between a query and library spectrum, if the
sequence is incorrectly assigned in the library, then the query
sequence assignment will also be incorrect. One example of this
phenomenon is illustrated in Figure 2. In this case, the query
spectrum is doubly charged and has a SEQUEST Xcorr of 3.98
(normalized Xcorr is 0.402) for the assignment to LDEQG-
GATAAQVEVNK. A reference spectrum for this sequence was
present in the library; however, it was returned as the second-
best match to the query. The best match not only has a
substantially higher score, but subjectively appears to be more
similar by manual inspection.

In some cases, the query spectrum appears to be a mixture of
two peptides. It is not uncommon for two peptides of the same
m/z to elute off of the column at the same time so that they are
both isolated and fragmented together.19,20 An example of a single
spectrum with fragmentation peaks from two different peptide
sequences is illustrated in Figure 3. The BiblioSpec and SEQUEST

assignments for this spectrum do not agree, but fragments from
both sequences appear to be present in the query spectrum.
BiblioSpec found the other peptide as the second best match with
a score (0.571) fairly close to the best match (0.666).

Several query spectra were incorrectly matched to library
spectra due to the presence of a single peak of high intensity.
This type of peak arises when a singly charged peptide experi-
ences a neutral loss of water or ammonia. The neutral-loss peak
can easily be the highest intensity peak in the spectrum and can
greatly influence the similarity score between two spectra,
especially in combination with SMZ preprocessing, which gives
higher weight to peaks with larger m/z values. However, the
neutral-loss peak is not informative, because it only indicates that
the two spectra have the same precursor m/z.

Minimizing false-positive identifications is the focus of ongoing
development of BiblioSpec. Poor-quality library entries can be
avoided by carefully choosing SEQUEST criteria for reference
identifications, verifying spectrum identities by orthogonal means
(e.g., other database search algorithms or de novo sequencing),
and selecting from several spectra per peptide. Furthermore,
search results may benefit from tailoring the preprocessing steps
to the charge state of the spectrum. For instance, it may be
advantageous not to weight peak intensities by m/z for singly
charged spectra. Finally, using additional features together with
the similarity score could improve the discrimination between
correct and incorrect sequence assignments (as in ref 21).

LTQ-LCQ Comparison. A second design goal for our library
searching method was that it be robust enough to work with data
collected on different mass spectrometers operating in different
laboratories. To test this capability, we created a library of E. coli
spectra acquired on an LTQ ion trap at the University of
Washington and searched for peptide assignments to query
spectra that were acquired on an LCQ ion trap mass spectrometer
at the University of Colorado. The BiblioSpec search made correct
sequence assignments for every query spectrum whose respective

(19) Zhang, N.; Li, X. J.; Ye, M.; Pan, S.; Schwikowski, B.; Aebersold, R. Proteomics
2005, 5, 4096-4106.

(20) Venable, J. D.; Dong, M. Q.; Wohlsclegel, J.; Dillin, A.; Yates, J. R., III. Nat.
Methods 2004, 1, 39-45.

(21) Anderson, D. C.; Li, W.; Payan, D. G.; Noble, W. S. J. Proteome Res. 2003,
2 (2), 137-146.

Figure 1. Discrimination between correct and incorrect peptide spectrum matches. The same data are shown here in two representations. (A)
A histogram of scores returned by the library search. Scores from correct matches are show in black and incorrect matches in gray. (B) A ROC
curve plotting the number of false positive matches versus the number of true positive matches for a series of score thresholds. (inset) An ROC
curve for the highest scoring 1% of false positives.
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reference spectrum was in the library. Disagreement between
BiblioSpec and SEQUEST (36% of matches) was entirely due to
the limited size of the library: none of the 321 incorrect matches
had the correct spectrum in the library. The area under the
resulting ROC curve (Figure 4) is 0.983. Even with a much smaller
library, we retain good sensitivity and specificity and are able to
identify all of the sequences that are in the library. Thus,
laboratories using the older LCQ ion trap should be able to take
advantage of libraries of LTQ spectra.

Peptide Modification Search. BiblioSpec is able to identify
spectra with posttranslational modifications (PTMs) as easily as
unmodified spectra. Database searches have two limitations for
PTM searches: the search time increases because many more
predicted spectra must be considered, and reliability decreases

Figure 2. Example of a BiblioSpec sequence assignment that did
not agree with SEQUEST. (A) Query spectrum and the sequence
assigned to it by SEQUEST (Xcorr 3.980). (B) Library spectrum that
best matches query (score 0.707). (C) Library spectrum with the
second highest match score (0.582) and the same sequence that
SEQUEST gave the query. The query spectrum looks more similar
to the BiblioSpec match than to the SEQUEST match.

Figure 3. Example of a query spectrum for which the BiblioSpec
and SEQUEST sequence assignments did not agree. The query is a
mixture of two peptides, and shown below it are library spectra of
the two individual components. (A) Query spectrum and the sequence
assigned it by SEQUEST. Peaks in common with (B) are marked
with * and peaks in common with (C) are marked with +. (B) Library
spectrum that best matches the query (score 0.666). Peaks in
common with query marked with a *. (C) Library spectrum with the
second highest match score (0.571). Peaks in common with query
marked with +.
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because a more sophisticated fragmentation model is required.
However, with BiblioSpec, modified spectra may be easily included
in the library and compared to queries. We demonstrated this
capability by searching all spectra of the unfractionated C. elegans
sample against a library containing modified spectra. BiblioSpec
found 44 spectra that matched one of the modified library spectra.
An example is shown in Figure 5.

CONCLUSIONS
Library searching offers a reliable means of peptide spectrum

identification. Larger libraries increase the number of peptides
that can be identified, but even with a smaller library, we can
accurately identify those peptides present and discriminate those
correct matches from incorrect matches based on similarity score.
We have chosen reference spectra based on identifications by
SEQUEST, but other sources could be used. Alternative database
searching or de novo sequencing algorithms are other possible
means of identifications. Spectra obtained from synthetic peptides
or from recombinant proteins could also serve as references.
Libraries could also be generated from previously published data
that have benefited from extensive manual curation. BiblioSpec
is a flexible spectrum comparison program that could be used in
other applications such as for rapid detection of specific peptides
of interest, for finding spectra in common between two experi-
ments,4 or as a preliminary step in database searching.
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Figure 4. ROC curves of the E. coli search. ROC of all matches
returned by the search with an area of 0.983. (Inset) ROC of the
matches including the first 1% of false positives.

Figure 5. Example of a query spectrum match to a library spectrum
with a posttranslational modification. (A) Query spectrum. (B) Library
spectrum that best matches the query (score 0.803). The peptide
sequence is LTNPTYGDLNHLVSLTMSGVTTCLR with an oxidized
methionine.
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