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Abstract

In our attempts to understand cellular function at the molecular level, we must be able to synthesize in-

formation from disparate types of genomic data. We consider the problem of inferring gene functional

classifications from a heterogeneous data set consisting of DNA microarray expression measurements and

phylogenetic profiles from whole-genome sequence comparisons. We demonstrate the application of the

support vector machine (SVM) learning algorithm to this functional inference task. Our results suggest the

importance of exploiting prior information about the heterogeneity of the data. In particular, we propose an

SVM kernel function that is explicitly heterogeneous. In addition, we describe feature scaling methods for

further exploiting prior knowledge of heterogeneity by giving each data type different weights.



1 Introduction

A primary goal in biology is to understand the molecular machinery of the cell. The sequencing projects cur-

rently underway provide one view of this machinery. A complementary view is provided by data from DNA

microarray hybridization experiments. In this paper, we describe computational techniques for inferring

gene function from these two distinct types of data. These techniques are a first step toward the longer-term

goal of learning about gene function simultaneously from many different types of genomic data.

Clearly, the availability of complete genomic sequence of human and other species provides a tremen-

dous opportunity for understanding the functions of biological macromolecules. In this work, we infer gene

function from phylogenetic profiles that are derived from a comparison between a given gene and a collec-

tion of complete genomes. Each profile characterizes the evolutionary history of a given gene. There is

evidence that two genes with similar phylogenetic profiles may have similar functions, the idea being that

their similar pattern of inheritance across species is the result of a functional link (Pellegrini et al., 1999).

Gene function can also be inferred from DNA microarray expression data. By offering a snapshot

of the messenger RNA expression levels of thousands of genes at once, microarrays allow biologists to

formulate models of gene expression on a scale that was unimaginable several years ago. Initial analyses

of this type of data focused on clustering algorithms, such as hierarchical clustering (Eisen et al., 1998)

and self-organizing maps (Tamayo et al., 1999). These unsupervised algorithms attempt automatically to

locate clusters of genes that share similar expression patterns and hence may share similarity in function.

Subsequently, Brown et al. applied a collection of supervised learning techniques to a set of microarray

expression data from yeast (Brown et al., 2000). They showed that an algorithm known as a support vector

machine (SVM) (Boser et al., 1992; Burges, 1998; Cristianini and Shawe-Taylor, 2000) provides excellent

classification performance compared to number of other methods, including Parzen windows, decision trees,

and Fisher’s linear discriminant (Brown et al., 2000). SVMs are members of a larger class of algorithms,

known as kernel methods, which can be non-linearly mapped to a higher-order feature space by replacing

the inner product operation in the input space with a kernel function
��� � � � �

.

In this paper, we extend the methodology of Brown et al. to learn gene functional classifications from

a heterogeneous data set consisting of microarray expression data and phylogenetic profiles. We test a

variety of techniques for combining information from both data types, including a novel kernel function

which is explicitly heterogeneous. We find that prior knowledge of heterogeneity can be exploited when
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selecting subsets of input features for use in classification. For most of the gene functional classifications

that we investigated, one type of genomic data provides significantly better training data than the other type.

Many feature selection algorithms are available for automatically selecting the most useful features to use

in training a classifier. We demonstrate that, for these data, feature selection algorithms that select among

data types (i.e., learn from phylogenetic profiles, from gene expression data, or from both) perform better

than algorithms that directly select features from the combined data set. In this paper, in an extension of the

methods described in (Pavlidis et al., 2001b), we also show that one can obtain a further improvement in

performance by weighting each data type according to its importance, rather than simply choosing among

data types.

The idea of combining heterogeneous data sets to infer gene function is not new. Marcotte et al. describe

an algorithm for functional annotation that uses expression vectors and phylogenetic profiles, as well as evo-

lutionary evidence of domain fusion (Marcotte et al., 1999). However, the algorithm consists of predicting

functional links between pairs of genes using each type of data separately, and then cataloging the complete

list of links. In contrast, the SVM method described here considers the various types of data at once, making

a single prediction for each gene with respect to each functional category. Indeed, the performance of SVMs

when data types are combined and a single hypothesis is formed is superior to combining two independent

hypotheses, and we believe this will be true for a wide range of techniques.
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2 Methods

The experiments carried out here use two types of genomic data. The first data set derives from a collection

of DNA microarray hybridization experiments (Eisen et al., 1998). Each data point represents the logarithm

of the ratio of expression levels of a particular gene under two different experimental conditions. The data

consists of a set of 79-element gene expression vectors for 2465 yeast genes. These genes were selected

by Eisen et al. based on the availability of accurate functional annotations. The data were generated from

spotted arrays using samples collected at various time points during the diauxic shift (DeRisi et al., 1997),

the mitotic cell division cycle (Spellman et al., 1998), sporulation (Chu et al., 1998), and temperature and

reducing shocks, and are available on the Stanford web site (http://www-genome.stanford.edu).

In addition to the microarray expression data, each of the 2465 yeast genes is characterized by a phy-

logenetic profile (Pellegrini et al., 1999). In its simplest form, a phylogenetic profile is a bit string, in

which the Boolean value of each bit indicates whether the gene of interest has a close homolog in the cor-

responding genome. The profiles employed in this paper contain, at each position, the negative logarithm

of the lowest
�

-value reported by BLAST version 2.0 (Altschul et al., 1997) in a search against a complete

genome, with negative values (corresponding to E-values greater than 1) truncated to 0. Two genes in an

organism can have similar phylogenetic profiles for one of two reasons. First, genes with a high level of

sequence similarity will have, by definition, similar phylogenetic profiles. Second, for two genes which lack

sequence similarity, the similarity in phylogenetic profiles reflects a similar pattern of occurence of their

homologs across species. This coupled inheritance may indicate a functional link between the genes, on

the hypothesis that the genes are always present together or always both absent because they cannot func-

tion independently of one another. The profiles in this study are constructed using 24 complete genomes,

collected from The Institute for Genomic Research website (http://www.tigr.org/tdb) and from the Sanger

Centre website (http://www.sanger.au.uk). Prior to learning, the gene expression and phylogenetic profile

vectors are adjusted to have a mean of 0 and a variance of 1.

Classification experiments are carried out using gene functional categories from the Munich Information

Center for Protein Sequences Yeast Genome Database (MYGD) (http://www.mips.biochem.mpg.de/proj/

yeast). The database contains several hundred functional classes, whose definitions come from biochemical

and genetic studies of gene function. The experiments reported here use classes containing ten or more

genes, and which are not substantially encompassed by any other class used, amounting to 108 classes. The
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complete data set and corresponding classifications are available at http://www.cs.columbia.edu/compbio.

For each class, a support vector machine is trained to discriminate between class members and non-

members. A support vector machine is a supervised learning algorithm developed over the past decade

by Vapnik and others (Boser et al., 1992). In the form employed here, SVMs learn binary classifications;

i.e., the SVM learns to answer the question, “Does the given gene belong to functional class X?” where X is

some category such as “ribosomal genes” or “sugar and carbohydrate transporters.” Support vector machines

classify points by locating them with respect to a hyperplane that separates class members from non-class

members in a high-dimensional feature space. The characteristics of the feature space are determined by

a kernel function, which is selected a priori. Mercer’s theorem (Mercer, 1909) shows that every positive

semi-definite kernel function corresponds to the inner product operation in some higher-dimensional feature

space. The current experiments employ a kernel function that has been shown to produce good classification

performance for some MYGD classes using this gene expression data set (Brown et al., 2000). The function

is an inner product raised to the third power:
��� �� � �� ����� � �� � ����
	 �� � ���	 �� � �� ���� ���

. This kernel

function takes into account pairwise and tertiary correlations among gene expression measurements. The

normalization term in the denominator projects the data onto the unit sphere. We also tested a radial basis

kernel function,
��� � � � ����� �
� � ��� � ���� ���� � � � �  � �

. As in previous work, the SVM uses a soft margin

that accounts for the disparity in the number of positive and negative examples for each class. For details

about this adjustment, see (Brown et al., 2000). A useful introduction to SVMs is available (Cristianini

and Shawe-Taylor, 2000), as is the software used to perform these experiments (http://www.cs.columbia.

edu/compbio).

(Place Figure 1 about here)

The two types of data — gene expression and phylogenetic profiles — are combined in three different

fashions, which we refer to as early, intermediate and late integration. These three methods are summarized

in Figure 1. In early integration, the two types of vectors are concatenated to form a single set of length-

103 vectors, which serve as input for the SVM. In intermediate integration, a heterogeneous kernel is used

in which the kernel values for each type of data are pre-computed separately, and the resulting values are

added together. These summed kernel values are used in the training of the SVM. Thus, given the above

kernel function
��� � � � �

, the heterogeneous kernel is
��� ��"! � ��#! � � ��� ��%$ � ��#$ �

, where subscripts denote gene

expression and phylogenetic profile data, respectively. Because the sum of any two positive semi-definite

matrices is positive semi-definite, intermediate integration forms a valid kernel. Finally, in late integration,
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one SVM is trained from each data type, and the resulting discriminant values are added together to produce

a final discriminant for each gene.

The heterogeneous kernel used in intermediate integration is an attempt to incorporate prior knowledge

into the task at hand. The method creates local features that are polynomial relationships among inputs

within a single type of data. These local features are then combined linearly to create global features. From

these global features a hyperplane is constructed. In constrast to the feature space produced by the early

integration method, polynomial relationships among different types of inputs are now ignored. This restric-

tion reflects our intuition that the correlations of inputs within one type of data are stronger than correlations

between data types. In theoretical terms, removal of these correlations reduces overfitting as (unneeded)

capacity is reduced. Indeed, this approach is similar in spirit to one already used in digit recognition prob-

lems in order to incorporate prior knowledge about spatial location (Vapnik, 1998). This incorporation was

achieved by constructing sparse polynomials that sum across sub-kernels computed for many small patches

within an image. In experiments on
� � �

-pixel input spaces, the authors decreased the number of polynomial

features from
� � � � to

� ��� �
and reported a 68% reduction in test error (Burges, 1999).

Each classification experiment is performed using cross-validation. For a given class, the positively

labeled and negatively labeled genes are split randomly into � groups for � -fold cross-validation. An SVM

is trained on �
� �

of the groups and is tested on the remaining group. This procedure is repeated � times,

each time using a different group of genes as a test set. For most of the experiments, we use three-fold

cross-validation. Leave-one-out cross-validation, which is used in some of the experiments, is simply � -

fold cross-validation with � equal to the total number of training examples.

The performance of each SVM is measured by examining how well the classifier identifies the positive

and negative examples in the test sets. To judge overall performance, we use the same measure as Brown et

al. (Brown et al., 2000). This measure, the cost savings, allows one to assign a higher cost to false negative

classification errors compared to false positives. To see why this unequal cost weighting is important,

consider two classifiers A and B trained to recognize the class of histones, which contains 15 genes. Say that,

on a test set of 822 genes, classifier A correctly identifies all 15 histones but also includes 15 non-histones

in its list of positive genes. On the other hand, suppose that classifier B classifies everything in the test set

as negative. Clearly, classifier A has learned to recognize something about the histones, whereas classifier B

has learned nothing at all. However, using an equal weighting of false positive and false negatives, these two

classifiers would yield the same cost (15). We assign a higher cost to false negatives in order to implement
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the intuition that failing to recognize one of the few positive examples is worse than inaccurately including

one of the many negative examples in the test set. The cost savings is calculated as follows. We define the

cost of using the method
�

as � � � � ����� � � � � � � � � � � � , where
��� � � �

is the number of false positives

for method
�

,
�
�
� � �

is the number of false negatives for method
�

, and � is the number of members

in the class. The cost for each method is compared to the cost � � � � for using the null learning procedure,

which classifies all test examples as negative. We define the normalized cost savings of using the learning

procedure
�

as � � � ��� � � � � � � � � � � � � � � , where � is the total number of positive examples in the

class. Thus, a perfect classifier has a normalized cost savings of 1, and the null classifier has a normalized

cost savings of 0.

We also perform feature selection on the combined data using the Fisher criterion score (Bishop, 1995;

Furey et al., 2001). For a given feature � , we compute the mean and standard deviation of that feature

across the positive examples (�	�
 and
 �
 , respectively) and across the negative examples (���
 and

 �
 ). The

Fisher criterion score,
� � �
 � � �
 � � � � �  �
 � ��� �  �
 � � � , gives higher values to features whose means differ

greatly between the two classes, relative to their variances. To perform feature selection, we determine the
�

features with the highest Fisher scores, and form a vector
�

of ones and zeros, indicating which features

are selected and which are not. We then pre-process our training data with the operation
� ���� � �

, where

the
�

operator is element-wise multiplication of vectors. This procedure is equivalent to using the kernel
��� ���� � � ���� � �

for support vector machine training.

In addition to feature selection, we consider feature scaling methods, in which features are weighted

according to a real-valued vector
�
. We use a feature scaling method that incorporates prior knowledge

about the heterogeneity of the data, weighting the two data types by the scalars � � and � � . This technique

reduces the pre-processing problem to finding just two real values. Selection of � � and � � can be done in

many ways, e.g., choosing them by minimizing a theoretical bound or the error on a validation set. For

computational reasons, we set � � and � � using the leave-one-out error of the nearest neighbor classifier,

which performed well in the feature selection experiments summarized in Table 3. That is, we measure the

cost savings from the leave-one-out procedure on the expression, phylogenetic profile and combined data.

Denoting these values as ��� , � $ and ��� , we then choose � � � �� � �� � ��� � � ��� � ��� � �� �� � ��� � � ��� � � $ � � 1
and � � � ��� � � .

1In the case that some of the cost savings are negative, a constant is added to ensure positivity. The degenerative case of one of

the denominators being equal to zero must also be avoided in this way.
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We also use the
�

-nearest neighbors algorithm (see, e.g (Duda and Hart, 1973)) as a means of selecting a

type of data from which to learn. The algorithm labels a test point as positive if more than
� � �

of its closest

(in Euclidean distance) neighbors from the training set are labeled positive; otherwise, the point is labeled

negative. Taking
� ���

(i.e., 1-nearest neighbor) amounts to assigning to each point the label associated

with its closest neighbor. Given a set of features, one can measure the quality of the set via the leave-one-out

error of this algorithm.
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3 Results

Our initial experiments aimed at determining which classes among the 108 selected were learnable from

either data type used alone. Based on the cost-savings measure, for each data type we selected the top

15 classes for further study. Three classes appear on both lists, yielding a total of 27 classes. The results

are summarized in the first two columns of Table 1. Included in the table are the equivalents of all five

classes used by Brown et al. (Brown et al., 2000).2 These experiments show that the SVM methodology

generalizes well to phylogenetic profile data, and that this new type of data allows for the characterization of

new functional classes. In other preliminary experiments, we found that a k-nearest neighbor classifier does

much worse than the SVM, further motivating the use of the SVM approach (not shown: see http://www.cs.

columbia.edu/compbio/exp-phylo/ for data).

The second set of experiments tests the ability of the SVMs to learn from both types of data at once. The

final five columns in Table 1 summarize these results, and Table 2 provides more details about the top five

MYGD classes. Overall, integrating the data using a heterogeneous kernel function provides a normalized

cost savings that is the best-performing or comparable to the best-performing method in 21 of the 27 classes,

where “comparable” means within one standard deviation of the best-performing method. This is more

classes than any of the other four methods. Furthermore, the average cost savings across all classes is higher

for this method than any other (
� � ��� � �

, paired Student’s � -test). Similarly, the intermediate integration

scheme fails to learn to classify only two classes, which is fewer classes than any of the other methods.

Using a radial basis function kernel instead of a third-degree polynomial, we obtained similar results (not

shown: see http://www.cs.columbia.edu/compbio/exp-phylo/ for data).

(Place Table 1 about here)

(Place Table 2 about here)

Learning from both data types is not always a good idea. For four classes, all three of the combined

methods lead to decreased classification performance relative to an SVM trained on a single type of data.

In every case, the decrease occurs when one data type provides much more information than the other,

indicating that the inferior data type contributes noise that disrupts learning. This observation suggests that

a feature selection algorithm that effectively eliminates noisy features should allow an SVM to learn these
2The MYGD functional catalog has been revised since the publication of Brown et al., changing the composition of the classes

substantially. For example, the “proteasome” class used in that paper has been subsumed into the “proteolysis” class. This is why

the SVM performance on these classes differs from the performance reported in the earlier work.
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classes more accurately.

However, our experiments demonstrate that a naive feature selection algorithm, which does not take

into account the heterogeneity of the data, does not typically yield improved classification performance.

Figure 2 shows the results of using the Fisher criterion score to select features from the combined data.

By treating each feature independently, this simple feature selection algorithm does not take into account

possible correlations between features, but the algorithm has the advantages of simplicity and efficiency.

For the most part, classification performance declines as features are removed. For several MYGD classes,

when combining the two types of data leads to a substantial decline in performance, feature selection yields

a small improvement. However, in none of these cases does feature selection yield a level of performance

comparable to that obtained using a single data type.

A more sophisticated feature selection method, which does take into account correlations and nonlinear-

ities, yields similar results. The method uses the SVM solution to measure the quality of the features, and

removes features that appear to contribute least — a so-called filter method (see, e.g (Weston et al., 2001)).

We do not give details of the method here because, although the results are marginally superior to the Fisher

criterion results, the same problem arises: the SVM feature selection method does not achieve performance

equal to the best-performing single data type in cases where the combined data set performs poorly. Even

worse, for these cases, hand-picking the best-performing single data set and trying various ways of adding

features to it still leads to a consistent deterioration in performance. Apparently, when one data set performs

quite poorly compared to the other (e.g., amino acid transporters, glycolysis and glucogenesis, sugar and

carbohydrate transporters, etc.), no useful information can be gleaned from it.

(Place Figure 2 about here)

The problem that the combined data sometimes performs poorly (or in general one dataset/kernel com-

bination performs better than others) suggests that it would be useful to determine that such an outcome

was likely before attempting to train. In other words, one would like to be able to make the optimal choice

between the options of using one data type, or the combination, before training.

Because this task is a special case of feature selection (selecting the best set of features given � distinct

sets), traditional quality measures for feature selection can still be used. For example, the Fisher criterion

score can be used to select the best data set by choosing the largest of the mean Fisher criterion scores.3

3The mean Fisher score of the combined data set is always intermediate between the mean Fisher scores from the two subsets.

Hence, we choose the combined data set if its score falls within 10% of the highest alternative.
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One can also attempt to estimate the SVM’s performance directly, via generalization bounds such as the VC

bounds (Vapnik, 1998) or the span bound (Chapelle and Vapnik, 2000), or via cross-validation. We found

that only the cross-validation was useful: the VC bound and span bound are too loose in this case. Finally,

we also measure the leave-one-out error of the nearest neighbor algorithm, which can be considered as a

compromise between the Fisher criterion score and cross-validation in terms of computation speed versus

accuracy.

(Place Table 3 about here)

We tested this idea by selecting among three data sets: the gene expression data, phylogenetic pro-

files or concatenated data set. This operation can be characterized by the preprocessing � � ���
�� � � �� � � �

� � ��� ��"$ � ��"$ � (in the intermediate integration case), where the free parameters are two binary variables � �
and � � . For the 27 classes, we counted how many times in three trials each method chose the best-performing

data set. These results, shown in Table 3, indicate that choosing the correct data set ahead of time can give

improved results. Both cross-validation and nearest neighbors are superior to the Fisher criterion score,

since even when these methods do not choose the outright best data set they choose one close to the best (as

hinted by the “wins in 2 or more trials” results). However, while cross-validation gains this improvement at

the expense of high computational cost, nearest neighbors provides a cheap compromise. Bearing in mind

that nearest neighbors can work in a feature space via kernels (Cristianini and Shawe-Taylor, 2000), these

preliminary results suggest that one can estimate the performance of any kernel (including the intermediate

integration method) with fairly low computational cost.

Motivated by the improved performance shown by the above data set selection technique, we also tested

a data set scaling technique. As described in the methods section, an alternative to feature selection is feature

scaling. We performed data type scaling on both the early integration and intermediate integration methods.

In the early integration case, this technique amounts to employing the kernel
��� � � �

�� � � � ��%$ � � � � �
�� � � � ��#$ � �

(where square brackets indicate concatenation of vectors), and in the intermediate integration case, the kernel

is � � ���
�� � � �

�� � � � � � ��� ��"$ � ��#$ � . We refer to these algorithms as Early* and Intermediate*. The results

of using these algorithms on the 27 classes are given in the last columns of Table 1. Applied to either the

early or intermediate integration method, this weighting procedure yields improved results based both on

the mean cost savings and the number of top-scoring classes.
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4 Discussion

As the quantity and variety of genomic data increases, molecular biology shifts from a hypothesis-driven

model to a data-driven one. Whereas previously a single laboratory could collect data and test hypotheses

regarding a single system or pathway, this new paradigm requires combining genome-wide experimental

results, typically gathered and shared across multiple laboratories. For example, constructing a single, � -

element phylogenetic profile requires the availability of � complete genomic sequences, which clearly could

not yet be generated by a single laboratory. The data-driven model requires sophisticated computational

techniques that handle very large, heterogeneous data sets.

The support vector machine learning algorithm is such a technique. SVMs scale well and have been

used successfully with large training sets in the domains of text categorization and image recognition (Cris-

tianini and Shawe-Taylor, 2000). Furthermore, in this paper, we demonstrate that SVMs can learn from

heterogeneous data sets. With an appropriate kernel function, the SVM learns from a combination of two

different types of feature vectors. In most cases, the resulting trained SVM provides as good or better gene

functional classification performance than an SVM trained on either data set alone.

For these data and these classifications, the heterogeneous kernel we introduce here (the intermediate

integration method) performs somewhat better than the other techniques we investigated. We hypothesize

that the improved performance results from the kernel’s ability to exploit our prior knowledge that correla-

tions within one type of data are stronger than correlations between different types. However, our results

with data type selection and scaling show that it is even more important to determine the importance of each

type of data for a given class, because even the heterogeneous kernel does not provide the best performance

across all classes. By weighting each data type according to its importance for classification, we make better

use of this prior knowledge.

Our results show that the supervised learning methodology proposed by Brown et al. (Brown et al.,

2000) can be extended in a straightforward fashion to some other classes in the MYGD. We have also shown,

however, that the majority of the MYGD classifications are not learnable from either gene expression data

or phylogenetic profiles. We do not believe that the failure to learn many of these classes is a failure of

the SVM method. Rather, for many functional classes, the data are simply not informative. The expression

data is only informative if the genes in the class are coordinately regulated at the level of transcription under

the conditions tested. Similarly, phylogenetic profiles are limited in resolution in part because relatively
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few genomes are available. In particular, among the genomes from which we derived the phylogenetic

profiles, all but one are bacterial. Thus it is difficult to generate useful phylogenetic profiles for genes that

are specific to eucaryotes. Because the availability of expression, sequence, and other kinds of data are

increasing steadily, we expect that the tools we are developing will continue to improve in power.

In our experiments, the primary utility of the phylogenetic profiles appears to lie in their ability to

summarize sequence similarity information rather than the inheritance patterns of genes during various

speciation events. Analysis of the classes that are most easily learnable from phylogenetic profiles alone

shows that these are also the classes that share considerable sequence similarity among their members,

for example, the various transporter classes (data not shown). In a previously published report on the use

of phylogenetic profiles in yeast (Marcotte et al., 1999), this effect was eliminated by merging groups of

similar genes, and by making links between pairs of genes, rather than requiring that the phylogenetic

profile similarity extend throughout an entire functional class, as we have. In our experiments, removing or

combining the data for genes with sequence similarity would have had the undesirable effect of forcing the

combining of the corresponding expression data, and there is no reason to think that genes with sequence

similarity would generally be coordinately regulated at the expression level. However, there are obviously

benefits to considering sequence similarity in a gene classification task, and in the future we will consider

other techniques for summarizing sequence similarities in a fixed-length vector.

In most of the experiments reported here, we used the third degree polynomial kernel function. This

consistency allows direct comparisons across different feature combination and feature selection algorithms.

We selected this particular kernel because of its straightforward interpretation (accounting for all primary

features and up to tertiary correlations in the data) and because previous work showed that this kernel

performs well for this gene expression data set (Brown et al., 2000). Another kernel that performs well

is the radial basis kernel, and our experiments with this kernel indicate that similar improvements can be

gained by incorporating knowledge of heterogeneity. We note that the performance of the various algorithms

would no doubt be improved by empirical kernel optimization. There is no reason to suppose, however, that

a particular method would benefit more than others from such optimization.

The experiments reported here suggest several avenues for future research. One obvious research di-

rection involves including additional types of data. Having shown that two types of data can be fruitfully

combined, we plan to extend the techniques described here to feature vectors derived from, for example,

the upstream promoter regions of genes (Pavlidis et al., 2001a). We also plan to experiment with the Fisher
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kernel method, in which each type of data is compared to a probabilistic model of the domain (Jaakkola and

Haussler, 1998; Jaakkola et al., 1999). By converting the heterogeneous features to probability gradients,

we hope to make the various types of data more directly comparable.

Support vector machines are part of a larger class of algorithms known as kernel methods, which have

recently been gaining in popularity (Schölkopf et al., 1999). A kernel method is any algorithm that employs

a kernel function to implicitly operate in a higher-dimensional space. In addition to SVM classifiers, kernel

methods have been developed for regression (Schölkopf et al., 1996), discriminant analysis (Mika et al.,

1999), and principal components analysis (Schölkopf et al., 1997). More members of this promising class

of algorithms should be applied to problems in computational biology.
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Figure 1: Three methods for learning from heterogeneous data with a support vector machine. In
early integration, the two types of data are concatenated to form a single set of input vectors. In intermediate
integration, the kernel values are computed separately for each data set and then summed. In late integration,
one SVM is trained on each data type, and the resulting discriminant values are summed.
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Class Expr Phylo Early Intermd Late Early* Intermd*

amino acid transport 0.08
�

0.02 0.77
�

0.10 0.50
�

0.04 0.69
�

0.07 0.49
�

0.08 0.70
�

0.07 0.72
�

0.07

ribosomal proteins 0.70
�

0.02 0.08
�

0.02 0.75
�

0.01 0.72
�

0.01 0.70
�

0.01 0.75
�

0.00 0.72
�

0.01

sugar and carbohydrate transport 0.30
�

0.07 0.67
�

0.03 0.67
�

0.05 0.69
�

0.01 0.64
�

0.02 0.70
�

0.02 0.66
�

0.01

glycolysis and gluconeogenesis 0.22
�

0.04 0.43
�

0.07 0.27
�

0.02 0.45
�

0.04 0.41
�

0.04 0.38
�

0.04 0.49
�

0.04

mitochondrial org. 0.41
�

0.01 0.15
�

0.01 0.42
�

0.02 0.41
�

0.02 0.36
�

0.01 0.42
�

0.01 0.42
�

0.01

tricarboxylic acid cycle 0.19
�

0.16 0.17
�

0.04 0.31
�

0.07 0.34
�

0.09 0.22
�

0.09 0.31
�

0.09 0.34
�

0.08

deoxyribonucleotide metab. 0.31
�

0.12 0.24
�

0.14 0.31
�

0.12 0.31
�

0.12 0.17
�

0.09 0.26
�

0.12

org. of cytoplasm 0.35
�

0.01 0.17
�

0.01 0.38
�

0.00 0.35
�

0.02 0.35
�

0.01 0.37
�

0.00 0.36
�

0.01

transport ATPases 0.14
�

0.04 0.36
�

0.06 0.22
�

0.05 0.36
�

0.04 0.23
�

0.03 0.28
�

0.05 0.37
�

0.08

amino acid biosynthesis 0.16
�

0.02 0.27
�

0.02 0.29
�

0.03 0.34
�

0.04 0.27
�

0.01 0.34
�

0.04 0.37
�

0.03

purine ribonucleotide metab. 0.17
�

0.02 0.26
�

0.05 0.19
�

0.02 0.33
�

0.04 0.17
�

0.03 0.19
�

0.04 0.34
�

0.05

pyrimidine ribonucleotide metab. 0.32
�

0.06 0.11
�

0.04 0.26
�

0.06 0.16
�

0.03 0.20
�

0.04 0.42
�

0.09

cytoplasmic degradation 0.33
�

0.02 0.33
�

0.02 0.29
�

0.03 0.18
�

0.02 0.33
�

0.01 0.29
�

0.02

respiration 0.30
�

0.02 0.30
�

0.03 0.26
�

0.03 0.17
�

0.01 0.28
�

0.02 0.26
�

0.04

org. of chromosome structure 0.30
�

0.01 0.30
�

0.00 0.30
�

00 0.12
�

0.05 0.31
�

0.00 0.29
�

0.02

phosphate utililization 0.22
�

0.04 0.08
�

0.05 0.26
�

0.05 0.23
�

0.07 0.22
�

0.04 0.26
�

0.05 0.25
�

0.07

org. of plasma membrane 0.06
�

0.02 0.25
�

0.02 0.23
�

0.03 0.24
�

0.01 0.26
�

0.01 0.26
�

0.03 0.27
�

0.01

pentose phosphate pathway 0.20
�

0.16 0.22
�

0.05 0.17
�

0.11 0.15
�

0.05 0.31
�

0.08

cellular import 0.03
�

0.02 0.24
�

0.04 0.17
�

0.04 0.18
�

0.02 0.20
�

0.03 0.21
�

0.05 0.23
�

0.04

protein folding and stabilization 0.24
�

0.04 0.19
�

0.04 0.24
�

0.08 0.16
�

0.04 0.24
�

0.06 0.30
�

0.07

proteolysis 0.23
�

0.02 0.23
�

0.01 0.18
�

0.05 0.15
�

0.01 0.23
�

0.02 0.18
�

0.05

pheromone response 0.23
�

0.05 0.15
�

0.03 0.18
�

0.04 0.18
�

0.07 0.16
�

0.09

nuclear org. 0.19
�

0.01 0.07
�

0.01 0.23
�

0.02 0.22
�

0.02 0.18
�

0.01 0.23
�

0.02 0.22
�

0.00

drug-transporters 0.22
�

0.10

org. of endoplasmic reticulum 0.20
�

0.03 0.21
�

0.03 0.18
�

0.03 0.12
�

0.02 0.19
�

0.01 0.17
�

0.03

org. of cell wall 0.09
�

0.07 0.19
�

0.07 0.13
�

0.08 0.15
�

0.09 0.21
�

0.08 0.16
�

0.09 0.16
�

0.11

anion transports 0.21
�

0.02

Best performing 7 9 12 15 4 19 16

Non-learnable 6 6 3 2 3 2 2

Mean cost value 0.18
�

0.03 0.21
�

0.04 0.26
�

0.03 0.30
�

0.04 0.24
�

0.03 0.29
�

0.04 0.32
�

0.05

Table 1: Summary of learning performance results. Each row in the table contains the cost savings for
one MYGD classification. Each cost savings is computed via three-fold cross-validation, with standard
deviation calculated across five repetitions. The first two columns are from SVMs trained on a single type of
data (gene expression or phylogenetic profiles). The remaining three columns are from SVMs trained using
early, intermediate, late, early* and intermediate* integration of the data, as described in the text. Values in
bold face are the best-performing or are comparable to the best-performing of the five methods. A missing
value indicates that the cost savings is not significantly greater than zero. The last three rows are summary
statistics, giving the average values for each method and total number of bold-face and missing values in
each column. 18



Class Size FP FN

amino acid transporters 22
� � ����� � ��� � 	���� � �

ribosomal proteins 173
� 	 � 	
��� � �� ��� �
��� � �

sugar and carbohydrate transporters 32
� � ����� � ��� � ����� � �

deoxyribonucleotide metabolism 9
� � ����� � ����� 	���� � �

mitochondrial organization 296 � ��� � ��� � � � � � � ����� � �

Table 2: Error rates for selected MYGD classes. The table lists error rates for the five most learnable
MYGD classes. Each row contains the name and size of the class, and the average numbers of false positives
and false negatives for that class from an SVM using intermediate integration.

Express Phylo Early Fisher sel 1-NN sel 5-CV sel

wins in all 3 trials 8 15 17 19 20 20

wins in 2 or more trials 8 15 17 22 25 26

Table 3: Feature selection for optimal data set choice. The table lists the number of classes for which
various data set selection algorithms choose the best or within one standard deviation of the best performing
data set. The results are computed over three separate trials, so the values are given for the case when
the best choice is made in all three trials or in more than two trials. The algorithms (columns from left to
right) are: always choosing the expression, phylogenetic or combined data, and selecting the dataset via the
Fisher criterion score, leave-one-out error of the 1-nearest neighbor algorithm and five-fold cross-validation
of SVMs.

19



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

N
or

m
al

iz
ed

 c
os

t s
av

in
gs



Number of features

Mitochondrial organization
Amino Acid Transporters

Ribosomal Proteins
Sugar & Carb. Transporters

DNA metabolism

Figure 2: Effect of feature selection on learning performance. Each series shows the performance of an
SVM trained on the combined data set using varying numbers of features, selected according to the Fisher
criterion score. These examples are representative of results obtained for all 27 classes tested.
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