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ABSTRACT

In our attempts to understand cellular function at the molecular level, we must be able to
synthesize information from disparate types of genomic data. We consider the problem of
inferring gene functional classifications from a heterogeneous data set consisting of DNA
microarray expression measurements and phylogenetic profiles from whole-genome sequence
comparisons. We demonstrate the application of the support vector machine (SVM) learning
algorithm to this functional inference task. Our results suggest the importance of exploiting
prior information about the heterogeneity of the data. In particular, we propose an SVM
kernel function that is explicitly heterogeneous. In addition, we describe feature scaling
methods for further exploiting prior knowledge of heterogeneity by giving each data type
different weights.
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1. INTRODUCTION

APRIMARY GOAL IN BIOLOGY is to understand the molecular machinery of the cell. The sequencing
projects currently underway provide one view of this machinery. A complementary view is provided
by data from DNA microarray hybridization experiments. In this paper, we describe computational tech-
niques for inferring gene function from these two distinct types of data. These techniques are a first step
toward the longer-term goal of learning about gene function simultaneously from many different types of
genomic data.

Clearly, the availability of complete genomic sequences of human and other species provides a tremen-
dous opportunity for understanding the functions of biological macromolecules. In this work, we infer
gene function from phylogenetic profiles that are derived from a comparison between a given gene and a
collection of complete genomes. Each profile characterizes the evolutionary history of a given gene. There
is evidence that two genes with similar phylogenetic profiles may have similar functions, the idea being
that their similar pattern of inheritance across species is the result of a functional link (Pellegrini et al.,
1999).
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Gene function can also be inferred from DNA microarray expression data. By offering a snapshot of the
messenger RNA expression levels of thousands of genes at once, microarrays allow biologists to formulate
models of gene expression on a scale that was unimaginable several years ago. Initial analyses of this type of
data focused on clustering algorithms, such as hierarchical clustering (Eisen et al., 1998) and self-organizing
maps (Tamayo et al., 1999). These unsupervised algorithms attempt automatically to locate clusters of genes
that share similar expression patterns and hence may share similarity in function. Subsequently, Brown
et al. (2000) applied a collection of supervised learning techniques to a set of microarray expression data
from yeast. They showed that an algorithm known as a support vector machine (SVM) (Boser et al.,
1992; Burges, 1998; Cristianini and Shawe-Taylor, 2000) provides excellent classification performance
compared to a number of other methods, including Parzen windows, decision trees, and Fisher’s linear
discriminant (Brown et al., 2000). SVMs are members of a larger class of algorithms known as kernel
methods, which can be nonlinearly mapped to a higher-order feature space by replacing the inner product
operation in the input space with a kernel function K (-, -).

In this paper, we extend the methodology of Brown et al. to learn gene functional classifications from a
heterogeneous data set consisting of microarray expression data and phylogenetic profiles. We test a variety
of techniques for combining information from both data types, including a novel kernel function which is
explicitly heterogeneous. We find that prior knowledge of heterogeneity can be exploited when selecting
subsets of input features for use in classification. For most of the gene functional classifications that we
investigated, one type of genomic data provides significantly better training data than the other type. Many
feature selection algorithms are available for automatically selecting the most useful features to use in
training a classifier. We demonstrate that, for these data, feature selection algorithms that select among
data types (i.e., learn from phylogenetic profiles, from gene expression data, or from both) perform better
than algorithms that directly select features from the combined data set. In this paper, in an extension of the
methods described by Pavlidis et al. (2001b), we also show that one can obtain a further improvement in
performance by weighting each data type according to its importance, rather than simply choosing among
data types.

The idea of combining heterogeneous data sets to infer gene function is not new. Marcotte et al. (2000)
describe an algorithm for functional annotation that uses expression vectors and phylogenetic profiles, as
well as evolutionary evidence of domain fusion. However, the algorithm consists of predicting functional
links between pairs of genes using each type of data separately and then cataloging the complete list of
links. In contrast, the SVM method described here considers the various types of data at once, making a
single prediction for each gene with respect to each functional category. Indeed, the performance of SVMs
when data types are combined and a single hypothesis is formed is superior to combining two independent
hypotheses, and we believe this will be true for a wide range of techniques.

2. METHODS

The experiments carried out here use two types of genomic data. The first data set derives from a
collection of DNA microarray hybridization experiments (Eisen et al., 1998). Each data point represents the
logarithm of the ratio of expression levels of a particular gene under two different experimental conditions.
The data consists of a set of 79-element gene expression vectors for 2,465 yeast genes. These genes were
selected by Eisen et al. based on the availability of accurate functional annotations. The data were generated
from spotted arrays using samples collected at various time points during the diauxic shift (DeRisi et al.,
1997), the mitotic cell division cycle (Spellman et al., 1998), sporulation (Chu et al., 1998), and temperature
and reducing shocks, and are available on the Stanford web site (www-genome.stanford.edu).

In addition to the microarray expression data, each of the 2,465 yeast genes is characterized by a
phylogenetic profile (Pellegrini et al., 1999). In its simplest form, a phylogenetic profile is a bit string,
in which the Boolean value of each bit indicates whether the gene of interest has a close homolog in the
corresponding genome. The profiles employed in this paper contain, at each position, the negative logarithm
of the lowest E-value reported by BLAST version 2.0 (Altschul et al., 1997) in a search against a complete
genome, with negative values (corresponding to E-values greater than 1) truncated to 0. Two genes in an
organism can have similar phylogenetic profiles for one of two reasons. First, genes with a high level of
sequence similarity will have, by definition, similar phylogenetic profiles. Second, for two genes which
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lack sequence similarity, the similarity in phylogenetic profiles reflects a similar pattern of occurence
of their homologs across species. This coupled inheritance may indicate a functional link between the
genes, on the hypothesis that the genes are always present together or always both absent because they
cannot function independently of one another. The profiles in this study are constructed using 24 complete
genomes, collected from The Institute for Genomic Research website (www.tigrorg/tdb) and from the
Sanger Centre website (www.sanger.au.uk). Prior to learning, the gene expression and phylogenetic profile
vectors are adjusted to have a mean of 0 and a variance of 1.

Classification experiments are carried out using gene functional categories from the Munich Information
Center for Protein Sequences Yeast Genome Database (MYGD) (www.mips.biochem.mpg.de/proj/yeast).
The database contains several hundred functional classes, whose definitions come from biochemical and
genetic studies of gene function. The experiments reported here use classes containing ten or more genes,
and which are not substantially encompassed by any other class used, amounting to 108 classes. The
complete data set and corresponding classifications are available at www.cs.columbia.edu/compbio.

For each class, a support vector machine is trained to discriminate between class members and non-
members. A support vector machine is a supervised learning algorithm developed over the past decade
by Vapnik and others (Boser et al., 1992). In the form employed here, SVMs learn binary classifications;
i.e., the SVM learns to answer the question “Does the given gene belong to functional class X?” where X is
some category such as “ribosomal genes” or “sugar and carbohydrate transporters.” Support vector machines
classify points by locating them with respect to a hyperplane that separates class members from nonclass
members in a high-dimensional feature space. The characteristics of the feature space are determined by
a kernel function, which is selected a priori. Mercer’s theorem (Mercer, 1909) shows that every positive
semi-definite kernel function corresponds to the inner product operation in some higher-dimensional feature
space. The current experiments employ a kernel function that has been shown to produce good classification
performance for some MYGD classes using this gene expression data set (Brown et al., 2000). The function
is an inner product raised to the third power: K(f(, {() = ((f( . {//\/f( XVY - {1) + 1)3. This kernel
function takes into account pairwise and tertiary correlations among gene expression measurements. The
normalization term in the denominator projects the data onto the unit sphere. We also test a radial basis
kernel function, K(X,Y) = exp(—||i — {(||2/202). As in previous work, the SVM uses a soft margin
that accounts for the disparity in the number of positive and negative examples for each class. For details
about this adjustment, see Brown et al. (2000). A useful introduction to SVMs is available (Cristianini and
Shawe-Taylor, 2000), as is the software used to perform these experiments (www.cs.columbia.edu/compbio).

The two types of data—gene expression and phylogenetic profiles—are combined in three different
fashions, which we refer to as early, intermediate, and late integration. These three methods are summarized
in Fig. 1. In early integration, the two types of vectors are concatenated to form a single set of length-103
vectors, which serve as input for the SVM. In intermediate integration, a heterogeneous kernel is used
in which the kernel values for each type of data are precomputed separately, and the resulting values are
added together. These summed kernel values are used in the training of the SVM. Thus, given the above
kernel function K (-, -), the heterogeneous kernel is K (Xg, T KX, Y »)» where subscripts denote gene
expression and phylogenetic profile data, respectively. Because the sum of any two positive semi-definite
matrices is positive semi-definite, intermediate integration forms a valid kernel. Finally, in late integration,
one SVM is trained from each data type, and the resulting discriminant values are added together to
produce a final discriminant for each gene.

The heterogeneous kernel used in intermediate integration is an attempt to incorporate prior knowledge
into the task at hand. The method creates local features that are polynomial relationships among inputs
within a single type of data. These local features are then combined linearly to create global features.
From these global features, a hyperplane is constructed. In constrast to the feature space produced by
the early integration method, polynomial relationships among different types of inputs are now ignored.
This restriction reflects our intuition that the correlations of inputs within one type of data are stronger
than correlations between data types. In theoretical terms, removal of these correlations reduces overfitting
as (unneeded) capacity is reduced. Indeed, this approach is similar in spirit to one already used in digit
recognition problems in order to incorporate prior knowledge about spatial location (Vapnik, 1998). This
incorporation was achieved by constructing sparse polynomials that sum across subkernels computed for
many small patches within an image. In experiments on 400-pixel input spaces, the authors decreased the
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FIG. 1. Three methods for learning from heterogeneous data with a support vector machine. In early integration, the
two types of data are concatenated to form a single set of input vectors. In intermediate integration, the kernel values
are computed separately for each data set and then summed. In late integration, one SVM is trained on each data type,
and the resulting discriminant values are summed.

number of polynomial features from 10> to 10'* and reported a 68% reduction in test error (Burges,
1999).

Each classification experiment is performed using cross-validation. For a given class, the positively
labeled and negatively labeled genes are split randomly into n groups for n-fold cross-validation. An SVM
is trained on n — 1 of the groups and is tested on the remaining group. This procedure is repeated n times,
each time using a different group of genes as a test set. For most of the experiments, we use three-fold
cross-validation. Leave-one-out cross-validation, which is used in some of the experiments, is simply n-fold
cross-validation with n equal to the total number of training examples.

The performance of each SVM is measured by examining how well the classifier identifies the positive
and negative examples in the test sets. To judge overall performance, we use the same measure as did
Brown et al. (2000). This measure, the cost savings, allows one to assign a higher cost to false-negative
classification errors compared to false positives. To see why this unequal cost weighting is important,
consider two classifiers A and B trained to recognize the class of histones, which contains 15 genes. Say that,
on a test set of 822 genes, classifier A correctly identifies all 15 histones but also includes 15 nonhistones
in its list of positive genes. On the other hand, suppose that classifier B classifies everything in the test set
as negative. Clearly, classifier A has learned to recognize something about the histones, whereas classifier
B has learned nothing at all. However, using an equal weighting of false positive and false negatives,
these two classifiers would yield the same cost (15). We assign a higher cost to false negatives in order to
implement the intuition that failing to recognize one of the few positive examples is worse than inaccurately
including one of the many negative examples in the test set. The cost savings is calculated as follows. We
define the cost of using the method M as C(M) = fp(M) + 2 - fn(M), where fp(M) is the number
of false positives for method M, fn(M) is the number of false negatives for method M, and n is the
number of members in the class. The cost for each method is compared to the cost C (V) for using the null
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learning procedure, which classifies all test examples as negative. We define the normalized cost savings
of using the learning procedure M as S(M) = (C(N)— C(M))/2n, where n is the total number of positive
examples in the class. Thus, a perfect classifier has a normalized cost savings of 1, and the null classifier
has a normalized cost savings of 0.

We also perform feature selection on the combined data using the Fisher criterion score (Bishop, 1995;
Furey et al., 2001). For a given feature J, we compute the mean and standard deviation of that feature
across the positive examples (7 ; and o, respectively) and across the negative examples n and o j_). The
Fisher criterion score, (/,L ;T )2 / ((0+)2 + (o ]._)2), gives higher values to features whose means differ
greatly between the two classes relatlve to their variances. To perform feature selection, we determine the
N features with the highest Fisher scores and form a vector S of ones and zeros, indicating which features
are selected and which are not. We then preprocess our training data with the operation (X * S) where
the * operator is element-wise multiplication of vectors. This procedure is equivalent to using the kernel
K (X * S Y « S) for support vector machine training.

In addition to feature selection, we consider feature scaling methods, in which features are weighted
according to a real-valued vector S. We use a feature scaling method that incorporates prior knowledge about
the heterogeneity of the data, weighting the two data types by the scalars s; and s;. This technique reduces
the preprocessing problem to finding just two real values. Selection of s and s, can be done in many ways,
e.g., choosing them by minimizing a theoretical bound or the error on a validation set. For computational
reasons, we set 51 and s using the leave-one-out error of the nearest neighbor classifier, which performed
well in the feature selection experiments that will later be summarized in Table 3. That is, we measure the
cost savings from the leave-one-out procedure on the expression, phylogenetic profile, and combined data.
Denoting these values as Cg, C,, and C,, we then choose 51 = % — %(CC/(CC + Cy)) + %(CC/(CC + Cp))1
and Sy = 1-— S1.

We also use the k-nearest neighbors algorithm (see, e.g., Duda and Hart [1973]) as a means of selecting
a type of data from which to learn. The algorithm labels a test point as positive if more than k/2 of its
closest (in Euclidean distance) neighbors from the training set are labeled positive; otherwise, the point
is labeled negative. Taking k = 1 (i.e., 1-nearest neighbor) amounts to assigning to each point the label
associated with its closest neighbor. Given a set of features, one can measure the quality of the set via the
leave-one-out error of this algorithm.

3. RESULTS

Our initial experiments aimed at determining which classes among the 108 selected were learnable from
either data type used alone. Based on the cost-savings measure, for each data type we selected the top 15
classes for further study. Three classes appear on both lists, yielding a total of 27 classes. The results are
summarized in the first two columns of Table 1. Included in the table are the equivalents of all five classes
used by Brown et al. (2000).> These experiments show that the SVM methodology generalizes well to
phylogenetic profile data, and that this new type of data allows for the characterization of new functional
classes. In other preliminary experiments, we found that a k-nearest neighbor classifier does much worse
than the SVM, further motivating the use of the SVM approach (not shown; see www.cs.columbia.edu/
compbio/exp-phylo/ for data).

The second set of experiments tests the ability of the SVMs to learn from both types of data at once.
The final five columns in Table 1 summarize these results, and Table 2 provides more details about
the top five MYGD classes. Overall, integrating the data using a heterogeneous kernel function provides
a normalized cost savings that is the best-performing or comparable to the best-performing method in 21 of

n the case that some of the cost savings are negative, a constant is added to ensure positivity. The degenerative
case of one of the denominators being equal to zero must also be avoided in this way.

2The MYGD functional catalog has been revised since the publication of Brown et al., changing the composition
of the classes substantially. For example, the “proteasome” class used in that paper has been subsumed into the
“proteolysis” class. This is why the SVM performance on these classes differs from the performance reported in the
earlier work.
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TABLE 2. ERROR RATES FOR SELECTED MYGD CLASSES?

Class Size FP FN
amino acid transporters 22 20+04 56£0.2
ribosomal proteins 173 266 +1.2 3424+1.1
sugar and carbohydrate transporters 32 24+0.7 9.0+ 0.0
deoxyribonucleotide metabolism 9 0.2+£0.2 4.6£0.7
mitochondrial organization 296 84.8 £ 1.8 128.4 £ 1.7

4The table lists error rates for the five most learnable MYGD classes. Each row contains
the name and size of the class, and the average numbers of false positives and false negatives
for that class from an SVM using intermediate integration.

the 27 classes, where “comparable” means within one standard deviation of the best-performing method.
This is more classes than any of the other four methods. Furthermore, the average cost savings across
all classes is higher for this method than any other (p < 0.05, paired Student’s ¢-test). Similarly, the
intermediate integration scheme fails to leam to classify only two classes, which is fewer classes than
any of the other methods. Using a radial basis function kernel instead of a third-degree polynomial, we
obtained similar results (not shown; see www.cs.columbia.edu/compbio/exp-phylo/ for data).

Learning from both data types is not always a good idea. For four classes, all three of the combined
methods lead to decreased classification performance relative to an SVM trained on a single type of data.
In every case, the decrease occurs when one data type provides much more information than the other,
indicating that the inferior data type contributes noise that disrupts learning. This observation suggests that
a feature selection algorithm that effectively eliminates noisy features should allow an SVM to learn these
classes more accurately.

However, our experiments demonstrate that a naive feature selection algorithm, which does not take
into account the heterogeneity of the data, does not typically yield improved classification performance.
Figure 2 shows the results of using the Fisher criterion score to select features from the combined data.
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FIG. 2. Effect of feature selection on learning performance. Each series shows the performance of an SVM trained
on the combined data set using varying numbers of features, selected according to the Fisher criterion score. These
examples are representative of results obtained for all 27 classes tested.


http://www.cs.columbia.edu/compbio/exp-phylo/

408 PAVLIDIS ET AL.

TABLE 3. FEATURE SELECTION FOR OPTIMAL DATA SET CHOICE?

Express Phylo Early Fisher sel 1-NN sel 5-CV sel
wins in all 3 trials 8 15 17 19 20 20
wins in 2 or more trials 8 15 17 22 25 26

4The table lists the number of classes for which various data set selection algorithms choose the best or within one
standard deviation of the best performing data set. The results are computed over three separate trials, so the values are
given for the case when the best choice is made in all three trials or in more than two trials. The algorithms (columns from
left to right) are: always choosing the expression, phylogenetic or combined data, and selecting the dataset via the Fisher
criterion score, leave-one-out error of the l-nearest neighbor algorithm and five-fold cross-validation of SVMs.

By treating each feature independently, this simple feature selection algorithm does not take into account
possible correlations between features, but the algorithm has the advantages of simplicity and efficiency.
For the most part, classification performance declines as features are removed. For several MYGD classes,
when combining the two types of data leads to a substantial decline in performance, feature selection yields
a small improvement. However, in none of these cases does feature selection yield a level of performance
comparable to that obtained using a single data type.

A more sophisticated feature selection method, which does take into account correlations and nonlin-
earities, yields similar results. The method uses the SVM solution to measure the quality of the features
and removes features that appear to contribute least—a so-called filter method (see, e.g., Weston et al.
[2001]). We do not give details of the method here because, although the results are marginally superior to
the Fisher criterion results, the same problem arises: the SVM feature selection method does not achieve
performance equal to the best-performing single data type in cases where the combined data set performs
poorly. Even worse, for these cases, hand-picking the best-performing single data set and trying various
ways of adding features to it still leads to a consistent deterioration in performance. Apparently, when
one data set performs quite poorly compared to the other (e.g., amino acid transporters, glycolysis and
glucogenesis, sugar and carbohydrate transporters, etc.), no useful information can be gleaned from it.

The problem that the combined data sometimes performs poorly (or, in general, one dataset/kernel
combination performs better than others) suggests that it would be useful to determine that such an
outcome was likely before attempting to train. In other words, one would like to be able to make the
optimal choice between the options of using one data type, or the combination, before training.

Because this task is a special case of feature selection (selecting the best set of features given n distinct
sets), traditional quality measures for feature selection can still be used. For example, the Fisher criterion
score can be used to select the best data set by choosing the largest of the mean Fisher criterion scores.>
One can also attempt to estimate the SVM’s performance directly, via generalization bounds such as the VC
bounds (Vapnik, 1998) or the span bound (Chapelle and Vapnik, 2000), or via cross-validation. We found
that only the cross-validation was useful: the VC bound and span bound are too loose in this case. Finally,
we also measure the leave-one-out error of the nearest neighbor algorithm, which can be considered as a
compromise between the Fisher criterion score and cross-validation in terms of computation speed versus
accuracy.

We tested this idea by selecting among three data sets: the gene expression data, phylogenetic profiles, or
concatenated data set. This operation can be characterized by the preprocessing s1 K (X, Y.)+s2 K (X . Y »)
(in the intermediate integration case), where the free parameters are two binary variables s; and s;. For
the 27 classes, we counted how many times in three trials each method chose the best-performing data set.
These results, shown in Table 3, indicate that choosing the correct data set ahead of time can give improved
results. Both cross-validation and nearest neighbors are superior to the Fisher criterion score, since even
when these methods do not choose the outright best data set they choose one close to the best (as hinted
by the “wins in two or more trials” results). However, while cross-validation gains this improvement at
the expense of high computational cost, nearest neighbors provides a cheap compromise. Bearing in mind

3The mean Fisher score of the combined data set is always intermediate between the mean Fisher scores from the
two subsets. Hence, we choose the combined data set if its score falls within 10% of the highest alternative.
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that nearest neighbors can work in a feature space via kernels (Cristianini and Shawe-Taylor, 2000), these
preliminary results suggest that one can estimate the performance of any kernel (including the intermediate
integration method) with fairly low computational cost.

Motivated by the improved performance shown by the above data set selection technique, we also tested a
data set scaling technique. As described in the methods section, an alternative to feature selection is feature
scaling. We performed data type scaling on both the early integration and intermediate integration methods.
In the early integration case, this technique amounts to employing the kernel K ([slie szf( ol [slife sz{( oD
(where square brackets indicate concatenation of vectors), and in the intermediate integration case, the
kernel is 51K (f(ea, {Q) + 5K (5(,;, {/p). We refer to these algorithms as Early* and Intermediate®. The
results of using these algorithms on the 27 classes are given in the last columns of Table 1. Applied to
either the early or intermediate integration method, this weighting procedure yields improved results based
on both the mean cost savings and the number of top-scoring classes.

4. DISCUSSION

As the quantity and variety of genomic data increases, molecular biology shifts from a hypothesis-driven
model to a data-driven one. Whereas previously a single laboratory could collect data and test hypotheses
regarding a single system or pathway, this new paradigm requires combining genome-wide experimental
results, typically gathered and shared across multiple laboratories. For example, constructing a single,
n-element phylogenetic profile requires the availability of n complete genomic sequences, which clearly
could not yet be generated by a single laboratory. The data-driven model requires sophisticated computa-
tional techniques that handle very large, heterogeneous data sets.

The support vector machine learning algorithm is such a technique. SVMs scale well and have been
used successfully with large training sets in the domains of text categorization and image recognition
(Cristianini and Shawe-Taylor, 2000). Furthermore, in this paper, we demonstrate that SVMs can learn
from heterogeneous data sets. With an appropriate kernel function, the SVM learns from a combination of
two different types of feature vectors. In most cases, the resulting trained SVM provides as good or better
gene functional classification performance than an SVM trained on either data set alone.

For these data and these classifications, the heterogeneous kernel we introduce here (the intermediate
integration method) performs somewhat better than the other techniques we investigated. We hypothesize
that the improved performance results from the kernel’s ability to exploit our prior knowledge that corre-
lations within one type of data are stronger than correlations between different types. However, our results
with data type selection and scaling show that it is even more important to determine the importance
of each type of data for a given class, because even the heterogeneous kernel does not provide the best
performance across all classes. By weighting each data type according to its importance for classification,
we make better use of this prior knowledge.

Our results show that the supervised learning methodology proposed by Brown et al. (2000) can be
extended in a straightforward fashion to some other classes in the MYGD. We have also shown, however,
that the majority of the MYGD classifications are not learnable from either gene expression data or
phylogenetic profiles. We do not believe that the failure to learn many of these classes is a failure of the
SVM method. Rather, for many functional classes, the data are simply not informative. The expression data
is only informative if the genes in the class are coordinately regulated at the level of transcription under
the conditions tested. Similarly, phylogenetic profiles are limited in resolution in part because relatively
few genomes are available. In particular, among the genomes from which we derived the phylogenetic
profiles, all but one are bacterial. Thus it is difficult to generate useful phylogenetic profiles for genes that
are specific to eucaryotes. Because the availability of expression, sequence, and other kinds of data are
increasing steadily, we expect that the tools we are developing will continue to improve in power.

In our experiments, the primary utility of the phylogenetic profiles appears to lie in their ability to
summarize sequence similarity information rather than the inheritance patterns of genes during various
speciation events. Analysis of the classes that are most easily learnable from phylogenetic profiles alone
shows that these are also the classes that share considerable sequence similarity among their members,
for example, the various transporter classes (data not shown). In a previously published report on the use
of phylogenetic profiles in yeast (Marcotte et al., 1999), this effect was eliminated by merging groups
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of similar genes and by making links between pairs of genes, rather than requiring that the phylogenetic
profile similarity extend throughout an entire functional class, as we have. In our experiments, removing or
combining the data for genes with sequence similarity would have had the undesirable effect of forcing the
combining of the corresponding expression data, and there is no reason to think that genes with sequence
similarity would generally be coordinately regulated at the expression level. However, there are obviously
benefits to considering sequence similarity in a gene classification task, and in the future we will consider
other techniques for summarizing sequence similarities in a fixed-length vector.

In most of the experiments reported here, we used the third-degree polynomial kernel function. This
consistency allows direct comparisons across different feature combination and feature selection algorithms.
We selected this particular kernel because of its straightforward interpretation (accounting for all primary
features and up to tertiary correlations in the data) and because previous work showed that this kernel
performs well for this gene expression data set (Brown et al., 2000). Another kernel that performs well
is the radial basis kernel, and our experiments with this kernel indicate that similar improvements can
be gained by incorporating knowledge of heterogeneity. We note that the performance of the various
algorithms would no doubt be improved by empirical kernel optimization. There is no reason to suppose,
however, that a particular method would benefit more than others from such optimization.

The experiments reported here suggest several avenues for future research. One obvious research direction
involves including additional types of data. Having shown that two types of data can be fruitfully combined,
we plan to extend the techniques described here to feature vectors derived from, for example, the upstream
promoter regions of genes (Pavlidis et al., 2001a). We also plan to experiment with the Fisher kernel
method, in which each type of data is compared to a probabilistic model of the domain (Jaakkola and
Haussler, 1998; Jaakkola et al., 1999). By converting the heterogeneous features to probability gradients,
we hope to make the various types of data more directly comparable.

Support vector machines are part of a larger class of algorithms known as kernel methods, which have
recently been gaining in popularity (Scholkopf et al., 1999). A kernel method is any algorithm that employs
a kernel function to implicitly operate in a higher-dimensional space. In addition to SVM classifiers, kernel
methods have been developed for regression (Scholkopf et al., 1996), discriminant analysis (Mika et al.,
1999), and principal components analysis (Scholkopf et al., 1997). More members of this promising class
of algorithms should be applied to problems in computational biology.
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