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Abstract

Rationale: In a shotgun proteomics experiment with data-dependent acquisition,
real-time analysis of a precursor scan results in selection of a handful of peaks for sub-
sequent isolation, fragmentation and secondary scanning. This peak selection protocol
typically focuses on the most abundant peaks in the precursor scan, while attempting
to avoid re-sampling the same m/z values in rapid succession. The protocol does not,
however, incorporate analysis of previous fragmentation scans into the peak selection
procedure.

Methods: In this work, we investigate the feasibility and utility of incorporating
analysis of previous fragmentation scans into the peak selection protocol. We demon-
strate that real-time identification of fragmentation spectra is feasible in principle, and
we investigate, via simulations, several strategies to make use of the resulting peptide
identifications during peak selection.

Results: Our simulations fail to provide evidence that peptide identifications can
provide a large improvement in the total number of peptides identified by a shotgun
proteomics experiment.

Conclusions: These results are significant because they point out the feasibility of
using peptide identifications during peak selection, and because our experiments may
provide a starting point for others working in this direction.
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Introduction

In broad terms, the goal of many tandem mass spectrometry experiments is to identify,
from a given complex mixture, as many distinct peptides as possible in an efficient fashion.
Accordingly, many aspects of a typical shotgun proteomics workflow are tuned to optimize
the number of high quality spectra derived from distinct peptides. For example, the liquid
chromatography phase provides the mass spectometer, at each time point, with a sample of
greatly reduced complexity relative to the initial sample, thereby reducing the probability of
observing hard-to-identify chimeric spectra, derived from a population of two or more peptide
species. Similarly, the flow of sample off the liquid chromatography column is calibrated so
that each MS1 scan over intact peptides is followed by sufficient MS2 scans to characterize
a large proportion of the identifiable peptide species.

In this work, we focus on a particular component of this workflow, namely, the selection
of peaks within an observed MS1 spectrum for subsequent isolation and characterization
via MS2 scans. With each MS1 scan, the spectrometer’s on-board computer must select a
subset of peaks to isolate, fragment, and measure in an MS2 scan. This task is challenging
because, in each duty cycle, hundreds of MS1 peaks may be reasonable candidates for MS2
analysis, but the available time typically permits only a small number (5–10) to be analyzed.
Ideally, a peak within an MS1 spectrum indicates the presence of a homogeneous population
of peptides, and the peak height can be used as a proxy for peptide abundance. Existing
protocols therefore use this MS1 information to select a set of m/z windows for subsequent
fragmentation and MS2 characterization.

Today, the most common peak selection strategy is based upon the notion of an exclusion
list, which is a dynamically maintained list of m/z values that are excluded from being
selected for fragmentation [1]. The standard exclusion list protocol works as follows. A list
of maximum fixed size m/z values (in the range of 50–500, depending on the instrument)
is maintained in the on-board computer’s memory and is initialized to be empty. With
each MS1 scan, the highest-intensity peaks are examined in order. Any peak already on the
exclusion list is ignored. Any peak not on the exclusion list is selected for fragmentation and
is placed on the exclusion list. This process continues until the start of the next duty cycle.
Once a peak is placed on the exclusion list, it remains there for a user-specifiable period of
time, typically around 30 seconds.

The main goal of the exclusion list protocol is to maximize the number of distinct peptides
identified, which it does using a two-part approach. First, the protocol aims to gather spectra
principally from abundant peptides, which are likely to be of higher quality and hence easier
to identify. Second, the exclusion list attempts to avoid re-sampling the same peptide species
twice, thereby ensuring the selection of a diverse set of peptide species. Taken together, these
goals are intended to lead to a broad sampling across abundant peptides in the sample.

A variety of methods have been proposed for improving upon the standard exclusion
list by performing analyses interleaved between repeated rounds of MS experiments. Thus,
peptides identified in an initial round are excluded from analysis in subsequent rounds [2–5]
or precursor peaks identified in an MS analysis are used to select peaks for analysis in a
subsequent MS/MS experiment [6–10]. Both types of approach yield a larger number of
total identifications overall.

In contrast, we consider the possibility of augmenting the peak selection protocol with
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information about whether a selected MS1 peak was successfully identified in the current ex-
periment. Such an approach is feasible because we have recently demonstrated that spectrum
identification via database search can be carried out extremely rapidly [11]—at a rate of 1550
spectra/s for a fully tryptic digestion of proteins from a complex eukaryote. This high-speed
search procedure raises the possibility of performing real-time spectrum identification and
exploiting the resulting identifications in the context of a peak selection protocol.

In this work, we first establish the technical feasibility of real-time spectrum identification.
We then explore the hypothesis that the information provided by real-time identification can
be successfully exploited by an adaptive peak selection protocol to yield better peptide iden-
tifications over the course of a shotgun proteomics experiment. We refer to such a protocol as
ID-informed adaptive peak selection. However, prior to implementing real-time identification
software and actually coupling it with an on-board peak selection protocol, we first chose
to simulate a variety of ID-informed adaptive peak selection schemes. Unfortunately, these
simulations did not strongly support our initial hypothesis: among many algorithms that we
tried, only a few led to an increase in the estimated number of distinct peptides identified,
and the increases were generally quite modest.

This article can therefore be read in several ways: as a statement of work in progress,
as a cautionary tale, or as a stimulant for other researchers working in this area. On the
one hand, we are quite certain that real-time spectrum identification is technically feasible.
On the other hand, we cannot at this time provide strong evidence for the utility of such an
approach.

Methods

Data In our simulation, we pooled MS2 data from a previously described collection of 11
replicate experiments [10]. Briefly, C. elegans were grown on enriched peptone plates seeded
with the OP50 strain of E. coli at 20C. After lysing and centrifugation, the lysate was de-
natured using 0.1% RapiGest SF (Waters Corporation, Milford, MA) in 50 mM ammonium
bicarbonate pH 7.8. The resulting C. elegans digest (4 g) was loaded from the autosampler
onto a 75-µm capillary column placed in line with a Waters NanoAcquity HPLC and au-
tosampler. Peptide elution was performed using two buffer solutions, as described previously.
Tandem mass spectra were acquired using either traditional data-dependent acquisition with
dynamic exclusion turned on or PAnDA. In PAnDA, MS/MS scans are performed on ions
selected from an m/z inclusion-exclusion list computed to prefer ions, which, based on prior
analysis of the µLC-MS on the same sample, were expected to be abundant peptides that
had not been selected in earlier replicate experiments. In both cases, a single high resolution
mass spectrum was acquired at 60,000 resolution (at m/z 400) in the Orbitrap mass analyzer
in parallel with 5 low resolution MS/MS spectra acquired in the LTQ.

Searching MS2 data Each experiment was searched using Tide [11] against a forward
and a reversed protein database consisting of the predicted open reading frames from C.
elegans and common contaminants (Wormpep v160, 27,499 proteins). Tide was run with
the following parameters: (1) fully-tryptic digestion of database proteins; (2) peptide lengths
between 6 and 50 residues; (3) peptide masses between 200 and 7200 Da; (4) static cysteine
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Experiment Spectra IDs

e10 7243 2007
e10PAnDA 6807 1370
e11 7226 1863
e11PAnDA 6637 1048
e12 7136 1650
e12PAnDA 6496 845
e14 6666 1478
e14PAnDA 6275 1017
e15 6765 1290
e15PAnDA 6476 1109
e16 7054 1656

Table 1: Data sets The table lists, for each of the 11 experiments, the number of MS2
spectra and the number of spectra that were successfully identified by Tide+q-ranker using
a q-value threshold of 0.01.

modification of +57.02146 Da. (carboxamidomethylation); (5) mass tolerance of ±3.0 Da.;
(6) monoisotopic precursor. The Tide results were further processed using q-ranker [12]
with the default parameters. Peptide-spectrum matches were accepted as “correct” using
a q-value threshold of 0.01. For the simulation results shown in Figure 5–6, a peptide was
considered to be identified if at least one PSM mapped to it. Table 1 provides a summary
of each data set, including the number of spectra and the number of PSMs at q ≤ 0.01.

Aligning MS1 data To pool the MS2 data required first aligning the MS1 data from
experiment e10 with respect to each of the 10 experiments. This alignment was done by
considering, for a given pair of experiments, all peptides that were succesfully identified
(using a q-value threshold of 0.1) exactly once in each of the two experiments. The pairs of
retention times were then used in a regression minimizing perpendicular least squares. The
resulting regression line allowed mapping an observed retention time in a given experiment
to its corresponding retention time in experiment e10.

Results

Requirements for real-time peptide identification

We begin by establishing the technical feasibility of real-time spectrum identification. Be-
fore doing so, however, we introduce a few concepts that are necessary to understand the
discussion. Any database search solution to spectrum identification is based on the idea of
enumerating, for each observed spectrum, all of the candidate peptides whose intact mass
is close to the inferred mass associated with the spectrum. Here, “close to” is measured in
Daltons, and is a parameter set by the user. In the SEQUEST algorithm, which we focus on
below, each candidate peptide generates a corresponding theoretical spectrum. A score func-
tion, called XCorr, computes the quality of the match between an observed spectrum and a
theoretical spectrum. Note that, although the original SEQUEST algorithm used a two-pass
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Semi-tryptic Fully tryptic
±3.0 ±0.25 ±3.0 ±0.25

S. cerevisiae 536 1198 2738 3244
C. elegans 77.2 413 1554 1980

Table 2: Throughput of the Tide database search software Each entry in the table
represents the number of spectra/s analyzed by Tide using the specified database and search
parameters.

scoring scheme involving a prelimimary score (Sp) and XCorr, more recent implementations
omit the Sp scoring [13]. SEQUEST thus returns, for each spectrum, the candidate peptide
whose theoretical spectrum matched with the highest XCorr value.

To achieve real-time peptide identification, we need a system that can do three things,
of which a typical peptide database search program can do only the first: (1) Perform a
database search of reasonable complexity, (2) achieve high bandwidth on a single computer,
and (3) achieve low latency between spectrum acquisition and identification.

To achieve reasonable search complexity for a typical shotgun proteomics experiment,
we want to be able to search a database of proteins from a single target organism, plus
contaminants, with some reasonable settings, such as a semi-tryptic digest and a sufficiently
wide precursor tolerance window. Reasonable database size, digest, and tolerance window
are significant contributors to search time. All modern peptide search software, can perform
reasonably complex searches.

For the second item in the list above, we have recently described Tide [11], which is a
reimplementation of the SEQUEST algorithm [14] that achieves extremely high bandwidth
on a single computer. Table 2 shows Tide’s throughput, measured in spectra per second on
a single thread of a single CPU, for eight different experimental settings: using a protein
database derived from S. cerevisiae or C. elegans, generating peptides using a fully tryptic
or semi-tryptic digestion, and selecting candidate peptides from the database using a large
(3.0 Da) or small (0.25 Da) precursor window. Even for the most demanding setting (C.
elegans, semi-tryptic, 3.0 Da), Tide’s throughput is approximately an order of magnitude
higher than the 5–10 spectra/s that would be required for a real-time pipeline.

However, the current implementation of Tide does not achieve the third aim listed above.
Instead, Tide assumes that all spectra to be searched are available at the start of compu-
tation. This assumption, while reasonable in the context of most proteomics laboratory
pipelines, fails in the context of real-time peptide identification.

To achieve ID-informed adaptive peak selection, we need to identify spectra in time to
make on-the-fly decisions on which peaks to select for fragmentation. We therefore need a
low-latency peptide identification method, meaning that spectra are identified within a very
short time (say, a few seconds) after the spectrum has been acquired. This requirement is
distinct from that of high bandwidth, though the two requirements are related and can be
addressed using many of the same approaches.
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Adapting Tide for real-time computation

Tide begins processing by sorting the input spectra by neutral mass. A low-latency version
of Tide would not be able to access all spectra at the start of processing, and hence cannot
this initial sort. Some alternative is required, and we discuss this next.

The initial sort of spectra, coupled with a pre-sorted database of peptides, achieves two
important objectives: avoiding redundant computation by computing a theoretical spectrum
for the same peptide in the context of identifying two different spectra and maintaining
a small memory footprint over the course of computation. The first objective is critical
for speed, and some alternative implementation is required to achieve the same level of
performance. However, the second objective—maintaining a small memory footprint—is
of intermediate importance: there needs to be sufficient memory available to complete the
computation, but there is no need to conserve beyond that point.

A simple substitute strategy for the initial sort is to preload all theoretical spectra in
memory in advance of collecting the first spectrum. Before any spectrum is processed, the
index of peptides is loaded from disk and the accompanying data structures are all stored in
memory. This preloading approach has the potential for enormous impact on the program’s
memory usage, but it also leaves the total running time (including the preloading step) almost
exactly the same as for the current Tide. This approach maintains the guarantee that each
theoretical spectrum will be computed at most once, at program startup. Thereafter, the
theoretical spectra will not have to be recomputed at all. All the functions of Tide are
performed under the preloading approach, but in a different order than for Tide. Except for
the larger memory footprint, the resource usage does not change.

We now address the question of whether enough memory would be available to perform a
reasonable peptide identification experiment under the preloading strategy. We first measure
empirically how much memory would be consumed. The current implementation of Tide
interleaves the preprocessing of the observed spectra, the computation of the theoretical
spectra, and computing the XCorr. The interleaving allows us to free memory used by the
theoretical spectrum computation once the relevant candidate peptides are no longer needed.
If we do not free the corresponding memory, then we can measure how much memory would
be used by the alternative approach described.

Figure 1 shows the total disk usage and cumulative memory allocated (ignoring reuse)
by Tide when run in each of four modes. We see that the worm dataset, which needs
the larger database, requires more memory than yeast under comparable settings. We also
see that semi-tryptic digestion is considerably more memory-intensive than fully-enzymatic
digestion. However, even in the most intensive case, only 6GB of memory is allocated in
total. These results show that on a modern workstation, there is sufficient memory not only
for a fully tryptic search, but even for a substantially larger semi-tryptic search, even without
substantial changes to data structures.

We have not implemented a low-latency version of Tide according to the method de-
scribed here. We opted first to perform simulations to ascertain the feasibility of ID-informed
adaptive peak selection. Had we seen more positive results from testing, then a low-latency
implementation of Tide would have been the next step.
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Figure 1: Disk and memory footprint for preloaded theoretical spectra. For each
of four benchmark data sets, the size of the index on disk is shown. We also show the
cumulative amount of memory allocated during processing (ignoring deallocations) for each
benchmark. The resulting value is an upper bound on the memory required to preload the
machine with all theoretical spectra.

Simulation protocol

Before attempting to implement ID-informed adaptive peak selection in the context of a
real shotgun proteomics experiment, we wanted to prove the concept first. To this end, we
simulated the action of a spectrometer able to select peaks adaptively. In the simulation, the
spectrometer has access to real-time peptide identifications as they would be performed by
a real-time Tide implementation and is able accordingly to select peaks for fragmentation.

In a perfect simulation, an MS2 scan would be available for any MS1 peak that a peak
selection algorithm might choose. To approximate this setting in our simulation, we pooled
MS2 data from a previously described collection of 11 repicate experiments [10] (see Meth-
ods). Pooling the data required first aligning the replicate experiments by retention time.
One experiment, called e10, was used as the basis for MS1 data that the simulator would
give to the candidate peak picker. Then the MS2 data was taken from each of the other
10 experiments and compared with the MS2 data of e10. Figure 2(A) shows the computed
retention-time alignment between e10 and another replicate, e12, as an example. Such an
alignment allows us to map any identified MS1 peak onto the baseline experiment e10. Fig-
ure 2(B) shows the result graphically: MS1 data from experiment e10 is interleaved with
MS/MS data from all replicates. The hope is that if a candidate peak picker requests an
MS/MS scan of a particular peak and it wasn’t selected in the actual run of e10, then one
of the other experiments may have taken a scan of the same peak at about the same time.

Given this data, the simulator works in conjunction with a given experimental peak-
selection procedure, Tide and an evaluator module, as shown in Figure 3. We implemented
in Python a framework for simulation according to the diagram. The spectrometer simulator,
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Figure 2: Simulation data. (A) Retention-time alignment of replicate experiments e10 and
e12. Each green point in the figure corresponds to a peptide identified in both experiments at
q < 0.1. The diagonal line is the result of a regression to the observed points (see Methods for
details). (B) MS1 data interleaved with combined MS2 data from multiple experiments. A
tiny region of the total data is shown magnified (about 7 seconds and 2 m/z from experiment
e10, which ran 100 minutes and covered 1000 m/z). The vertical red lines represent the MS1
data from experiment e10, with higher-intensity peaks indicated in brighter shades of red.
A green tick mark shows peaks picked for analysis during the actual run of e10. A yellow
tick mark shows where interpolated MS2 data from another replicate experiment is available
during simulation. the experiments.

Figure 3: Structure of spectrometer simulator The spectrometer simulator component
runs through all the MS1 scans from experiment e10, one at a time. It passes this MS1
data to a modular peak selection procedure, which selects peaks for fragmentation. The
simulator checks whether it has a corresponding MS/MS scan. If it does, then it uses Tide
to retrieve the corresponding identification and XCorr values. The information from Tide is
also passed to the peak selection procedure. Finally, the list of identified peptides is sent to
the evaluator for comparison against a precomputed list of high-confidence identifications.
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Figure 4: Pairwise differences between peaks in experiment e10. The figure plots the
differences in retention time and m/z between all pairs of nearby peaks that were actually
selected for fragmentation in experiment e10. Thus, the figure illustrates the effect of the
on-board exclusion list.

the Tide results module, and the evaluator were implemented in one Python program which
was allowed to run with any separately-supplied peak picker procedure. This approach
enabled us to run simulations under varying parameter settings.

After completion of one simulation run, we are primarily interested in the total number
of unique peptides identified over the course of the entire spectrometry experiment. How-
ever, because of the limits inherent in simulation—in particular, the simulator’s inability
to return every MS2 spectrum requested by the peak picker—we could not use this simple
metric to make reasonable comparisons against the basic exclusion list, for which complete
corresponding MS2 data is available. We therefore selected a two-dimensional metric: the
number of unique peptides identified versus the number of spectrum requests for which an
MS2 scan was available.

Performance of the baseline method

To establish a baseline for our simulation, we began by attempting to replicate, as closely as
possible, the behavior of the actual exclusion list that was used to generate our experimental
data. The basic settings included an exclusion duration of 18 seconds and an exclusion
window of ∆m/z ∈ [−0.5, 1.5] relative to any excluded peak. That is, when a candidate
peak is considered for fragmentation, it is checked for two criteria against every other peak
previously chosen: if the candidate occurs within 18 seconds of a previously chosen peak and
also falls within the exclusion window of that peak by m/z, then the candidate may not be
picked. A picture of these settings can be drawn by plotting the differences between all pairs
of selected peaks within e10, by precursor m/z and retention time (Figure 4). Such a picture
is symmetric by construction, and the blank region highlights the excluded differences. This
picture shows that our settings for the exclusion window and exclusion duration are correct.

The results of this initial simulation are shown in Figure 5. In the figure, each point
corresponds to a different setting of simulation parameters, where the parameters define the
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Figure 5: Baseline performance of the simulated exclusion list. In the figure, each
point represents a complete simulated mass spectrometry experiment under varying parame-
terizations of the simulator. The figure plots the total number of distinct peptides identified
as a function of the number of selected peaks for which the simulation successfully returned
an MS2 spectrum. The point in the upper right represents the actual e10 experiment, and
the line represents the ratio of identifications to total peaks acquired throughout the run of
e10.

tolerance of the simulator for returning MS2 data whose retention time or m/z precursor
differed from that requested. The most striking observation to be drawn from Figure 5 is
that the simulated exclusion list yields far fewer MS2 spectra and, correspondingly, fewer
distinct peptide identifications than the real experiment (shown as a point in the upper right
corner of the plot). Even if we select the simulation parameters that yield the best results
(m/z tolerance of 0.4 Da/charge and retention time tolerance of 1.8 minutes), the simulator
only successfully returns 6717 MS2 spectra, which is 526 fewer spectra than were actually
produced in experiment e10. On the other hand, the rate of successful identifications is
sometimes higher and sometimes lower than in the real experiment, as shown by the relative
locations of the green simulation points and the red diagonal line.

We hypothesize that the tendency to return fewer MS2 spectra in the simulation arises
for two reasons. First, we observed that, in some cases, the on-board computer selected
peaks that are not taken from the top few peaks by intensity. Although some of the skipped-
over peaks could be explained by their presence on the exclusion list, not all of the skipped
peaks could be “explained away” in this fashion. We therefore suspect that the actual
peak selection algorithm includes some features of which we were not aware. Second, we
observed that the exclusion list is surprisingly unstable, in that slight perturbations in the
choice of peaks early in the experiment lead to far-reaching differences in the choice of peaks
later on. This phenomenon appears to be the result of a feedback effect between the peak
selector and the exclusion list over the course of a run: a change in peak selection leads
to a different exclusion list, which leads to a subsequent change in peak selection, and so
on. The second effect thus magnifies the impact of small differences in peak selections early
in the experiment. Overall, the mismatch between reality and simulation underscores the
importance of establishing a simulation baseline against which to compare the results of
alternative peak selection procedures.
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Variable-Duration Exclusion List

The hypothesis underlying our first peak-picking method is that the basic exclusion list
duration is not optimal for acquiring a diversity of peptides, once the peptides are knowable.
The 18-second exclusion list duration represents a mean duration time, but performance
could be improved if peaks corresponding to quickly-eluting peptides came off the list quickly,
whereas peaks corresponding to slowly-eluting peptides should remain on the list for a longer
period of time. Based on this intuition, we reasoned that if we know the identity of the
selected peaks, then a repeated identification is a good indication that the peptide is still
eluting. In that case, a longer than normal exclusion list duration should apply for that
peak.

To implement this strategy, we gather peaks in order of intensity, just as for the basic
exclusion list, but we modify the decision to include or exclude them. We allow a peak to be
requeried after the normal exclusion time. However, if a peak is requeried and is identified
as the same peptide as previously, the peak subsequently remains on the exclusion list for
three times longer.

The results from the variable duration exclusion list procedure are shown in the top two
panels of Figure 6. We can see that for a majority of simulation settings (most individual
plotted points), the variable exclusion list identifies slightly more distinct peptide than the
simulated basic exclusion list. However, the difference in performance is extremely modest:
an average increase of 1.9 distinct peptides out of an average total of 997 for the basic
exclusion list.

Weibull-score Triage

The second peak-picking method that we investigated is based on the hypothesis that if a
peak is not confidently identified, then it may be beneficial query the same peak a second
time. The method subdivides spectra into three groups: (1) those with high scores that do
not need to be re-queried, (2) those with very low scores for which a re-query is not likely to
lead to a successful identification, and (3) spectra with intermediate scores that should be
re-queried. This hypothesis sets up a natural triage as follows. If a peak is identified with
high confidence or low confidence, then it should be placed on the exclusion list according
to the standard protocol. Alternatively, if the peak is identified with middling confidence,
then we allow it to be requeried after a much shorter interval.

We used a previously described confidence estimation metric, based on fitting a Weibull
curve to the tail of the scoring distribution over the candidate peptides [15]. We employed
this score on the theory that, if this method worked well, we could introduce the Weibull-
based confidence estimator into Tide while keeping the performance high enough to meet
the throughput and latency requirements for real-time peptide identification.

We then applied the following specific protocol:

1. If a selected peak was identified with a p-value of 0.01 according to the Weibull curve
fit, then it was placed on the exclusion list normally.

2. If a selected peak failed to be identified confidently (p-value > 0.1), then it was also
placed on the exclusion list normally.
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Figure 6: Simulation results. In the figure, each left-hand panel shows the results of
simulations, under varying tolerances, of a specified peak selection procedure. Each plotted
point represents a complete simulated mass spectrometry experiment under varying parame-
terizations of the simulator. Each panel plots the total number of distinct peptides identified
as a function of the number of selected peaks for which the simulation successfully returned
an MS2 spectrum. In each case, the red cross in the upper right represents the actual e10
experiment, and the red line represents the ratio of identifications to total peaks acquired
throughout the run of e10. For comparison, each panel also includes the results for the
basic exclusion list. In the right-hand panels, for each setting of simulation tolerances, we
plot the differences between a specified peak selection procedure and the basic exclusion list.
The y-axis shows the difference in the number of distinct peptides identified, and the x-axis
shows the difference in the number of selected peaks for which the simulator returned an
MS2 spectrum.
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3. If a selected peak was identified with intermediate confidence (p-value between 0.01
and 0.1), then it was placed on the exclusion list only briefly and was allowed to be
requeried after 5 seconds.

This approach performed noticeably poorly relative to the basic exclusion list—about
19% fewer identifications than the basic exclusion list, averaged across a variety of tolerances,
albeit with 11% fewer available simulation peaks. Detailed results are shown in the middle
two panels of Figure 6. We investigated other triage thresholds and obtained similarly poor
results (data not shown).

Charge state exclusion

The third peak-picking method we investigated is based on the fact that the same peptide
may elute roughly simultaneously at two different charge states. The basic peak selection
protocol may then end up choosing both such peaks. No effort is made to prefer one over
the other, because it may be easier to identify the peptide at one charge state or the other,
and the spectrometer does not know a priori which is preferable. However, we hypothesize
that if a peak is identified with high confidence at one charge state, then we can reasonably
exclude the corresponding peaks at the other charge states as well, because they are likely
to be the same peptide species. If a peak is not identified with high confidence, then it may
be treated as before.

The results, shown in the bottom two panels of Figure 6, are somewhat more promising
than for the other peak picking methods we examined, but remain modest: an average
of 10 more unique peptide identifications (1%) over the simulated basic exclusion list. To
be sure of the effect, we also show the results (shown in red crosses) of simply excluding
peaks at sister charge states on a first-come-first-served basis, without regard to whether
the identification at the first attempted charge state was made confidently. These results
are worse than the basic exclusion list and show that real-time identification was critical in
gaining the additional identifications seen in the charge state exclusion method.

Discussion

Overall, our results point to one positive conclusion and one negative conclusion. On the
one hand, we have demonstrated that real-time assignment of peptides to fragmentation
spectra is feasible, in principle. Much larger searches, such as non-enzymatic digest or
searches allowing multiple modifications per peptide, would require more memory and more
time than the above strategy provides. Hence, there certainly remain limits to what can
be achieved in a real-time context, but our analysis brings closer together the notions of
high-throughput and of real-time peptide identification.

On the other hand, our simulations have failed to provide evidence that real-time identi-
fications yield significant value in the context of selecting MS1 peaks for fragmentation. In
particular, we could not demonstrate that any of the three peak-selection strategies would
yield more than a 1% increase in unique peptide identifications relative to the standard
exclusion list.
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Among the peak-selection strategies that we tried, the Weibull-triage method fared
poorly, while the other two methods showed very slight improvements over the basic ex-
clusion list, with the charge-state exclusion being the most promising. Thus, it seems that
the better-performing approaches rely on aggressively excluding peaks rather than relaxing
the exclusion criteria. Rather than requerying peaks that failed to be identified previously,
we are better off excluding those peaks that have any likelihood of being a duplicate. Our
interpretation is that this is because the generally low identification rate of peptides is a
stronger effect than that of noise in the spectrum.

We were stymied in getting more positive peak selection results by at least three effects.
The first was the insufficiency of data for a good simulation: many requested peaks did
not have corresponding scans. We attempted to address this problem by aggregating over
replicate experiments, but clearly, aggregating over a larger set of experiments would lead
to a better simulation. We also applied a two-dimensional success metric that attempts to
correct for missing simulation data.

The second effect was that results were more sensitive to uninteresting parameters, such
as simulation tolerances, than interesting ones. To address this problem, we allowed the
simulation parameters to vary, and we aggregated over all of those results.

The third effect was that the actual peak-picking strategy employed by the spectrometer
is apparently more complex than a straightforward exclusion list. In principle, we could
attempt to reverse engineer the mechanism of the on-board peak selector; however, the
instability of the exclusion list argues against this approach. Experimental peak selectors
will necessarily deviate from the on-board peak selector’s choices, so the subsequent effects of
exclusion list instability are unavoidable in evaluating alternative peak selectors. It therefore
makes sense in evaluation to use a baseline that is subject to the same instability.
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[6] O. Rinner, L. Mueller, M. Hubálek, M. Müller, M. Gstaiger, and R. Aebersold. An
integrated mass spectrometric and computational framework for the analysis of protein
interaction networks. Nature Biotechnology, 25:345–352, 2007.

[7] P. Picotti, R. Aebersold, and B. Domon. The implications of proteolytic background
for shotgun proteomics. Molecular and Cellular Proteomics, 6:1589–1598, 2007.

[8] A. Schmidt, N. Gehlenborg, B. Bodenmiller, L. Mueller, D. Campbell, M. Mueller,
R. Aebersold, and B. Domon. An integrated, directed mass spectrometric approach
for in-depth characterization of complex peptide mixtures. Molecular and Cellular Pro-
teomics, 7:2138–2150, 2008.

[9] A. Zerck, E. Nordhoff, A. Resemann, E. Mirgorodskaya, D. Suckau, K. Reinert,
H. Lehrach, and J. Gobom. An iterative strategy for precursor ion selection for LC-
MS/MS based shotgun proteomics. Journal of Proteome Research, 8:3239–3251, 2009.

[10] M. R. Hoopmann, G. E. Merrihew, P. D. von Haller, and M. J. MacCoss. Post analysis
data acquisition for the iterative MS/MS sampling of proteomics mixtures. Journal of
Proteome Research, 8(4):1870–1875, 2009.

[11] B. Diament and W. S. Noble. Faster sequest searching for peptide identification
from tandem mass spectra. Journal of Proteome Research, 10(9):3871–3879, 2011.
PMC3166376.

[12] M. Spivak, J. Weston, L. Bottou, L. Käll, and W. S. Noble. Improvements to the Per-
colator algorithm for peptide identification from shotgun proteomics data sets. Journal
of Proteome Research, 8(7):3737–3745, 2009.

[13] J. K. Eng, B. Fischer, J. Grossman, and M. J. MacCoss. A fast SEQUEST cross
correlation algorithm. Journal of Proteome Research, 7(10):4598–4602, 2008.

[14] J. K. Eng, A. L. McCormack, and J. R. Yates, III. An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database. Journal
of the American Society for Mass Spectrometry, 5:976–989, 1994.

[15] A. A. Klammer, C. Y. Park, and W. S. Noble. Statistical calibration of the sequest
XCorr function. Journal of Proteome Research, 8(4):2106–2113, 2009.

15


