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1. INTRODUCTION

SEQUEST1 pioneered the pure database search approach for
analysis of tandem mass spectra from shotgun proteomics data.
Despite the passage of some time, SEQUEST remains popular: a
search on Google Scholar returns about 5800 articles between
2006 and 2010 mentioning “SEQUEST” and “peptides”.

Although SEQUEST enjoys considerable popularity, it runs
slowly even on modern architectures. Performance varies sig-
nificantly based on the size of the peptide database, and especially
on the number of candidate peptides considered per spectrum,
but analysis times are typically in the range of 1 s per spectrum
identified. Consequently, efficient data analysis of an MS/MS
experiment often requires significant computational resources,
including dedicated computing clusters. Barriers of time and
expense play a correspondingly restrictive role in experiment
design. Conversely, faster identification broadens the possibilities
for experimentation.

Many approaches exist for identifying peptides from tandem
mass spectra (reviewed in ref 2). These methods may be
categorized broadly as de novo methods, which analyze spectra
without reference to an external set of known peptides; database

methods, which match spectra to the closest candidate peptide in
a database of known peptides; hybrid methods, which employ
some combination of the previous two approaches; and library
search methods, which compare observed spectra to a library of
previously observed, annotated spectra.

Database search methods work by comparing each observed
spectrum against a theoretically predicted spectrum for each
peptide in a database, typically assigning a score to each database
entry and reporting the highest-scoring result. The main scoring
function of SEQUEST is XCorr,

1,3 which assigns a similarity score
to any given pairing between an observed spectrum and the
theoretical spectrum of a candidate peptide.

As originally implemented, XCorr is costly to compute, so
several approaches have been used to improve the speed of the
XCorr calculation. SEQUEST itself uses a faster preliminary score,
Sp, expecting that the peptide with the highest XCorr will also have
a sufficiently high Sp to be included in a second scoring round.
TurboSEQUEST and Crux4 introduced to the SEQUEST
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method an index based on precursor mass to increase the
efficiency of candidate peptide retrieval. Recently, a faster XCorr

computation, performed as a dot product, was described in ref 3.
This method is included in Crux and more recent SEQUEST
versions. However, despite such advances, the need for further
speed improvements remains.

In parallel to these SEQUEST-specific developments, a host of
competing database search methods have been described,5�14

along with a variety of methods for performing the searches
efficiently. Many of these tools use a database index, usually
indexing on precursor mass and, in one case, also by MS/MS
fragment mass.15 Other tools gain efficiency by reordering the
spectra themselves.16 A variety of algorithms use de novo
analysis,12 filtering,17 two-pass searching,14 hashing,18 or metric
space indexing19 to efficiently reduce the effective size of the
database. In general, such methods may perform very effectively
at the cost of losing a few identifications, or slightly less efficiently
in a lossless fashion. Finally, some tools are designed to exploit
multicore or multithreaded CPUs,10 GPUs,20 or clusters of
CPUs21 or to make efficient use of the CPU cache.13,22 At least
one vendor, Sage-N, offers a combination hardware/software-
based product.

In any database approach to peptide identification, the num-
ber of candidate peptides may be as much as quadratic in the size
of the protein database, so all search methods must manage space
efficiently. The original SEQUEST did not include a peptide
index at all but rather scanned the database file repeatedly for
each new spectrum. This approach requires little memory and
disk space, but it runs slowly. Modern desktop computers have
far more capacious memories and disks than those from the time
SEQUEST was first developed, but memories are still typically
too small to accommodate a complete peptide list for many
searches. Consequently, compression schemes such as those in
refs 23 and 24 have been used to reduce memory bloat.

Here, we introduce Tide, a much faster implementation of the
SEQUEST algorithm. Various versions of SEQUEST exist that
differ in detail. Tide’s analysis of MS/MS spectra follows that of
Crux,4 an open source software package based on SEQUEST.
Tide yields identical XCorr scores to those of Crux (version of
4/14/09). However, through a combination of algorithmic en-
hancements, improved system design, and better use of machine
resources, Tide is dramatically faster than recent versions of
SEQUEST and Crux, particularly when the database is created
using fully enzymatic digestion. Tide approaches space limita-
tions by curtailing its use of machine memory; however, Tide is
not engineered toward low disk usage because disk is typically a
far cheaper resource than memory or time. The Tide software is
freely available for academic and nonprofit use as part of the Crux
software toolkit: http://noble.gs.washington.edu/proj/crux.

2. MATERIALS AND METHODS

Tide is written in standard C++ including the standard
template libraries. All code is single-threaded; parallel execution
is achievable by running multiple program instances simulta-
neously. During development, timing and profiling experiments
were done on a 2.4 GHz Dual Pentium processor with 4 GB of
memory running Linux. Final timing measurements were per-
formed on 2.33 GHz Dual Xeon processor with 8GB memory
running Linux, with all code compiled in 64-bit mode.

Two benchmark data sets were used for both development
and final timing: a “yeast” set and a larger “worm” set. The yeast

set was acquired on an LTQ ion trap mass spectrometer from
a tryptic digest of an unfractionated Saccharomyces cerevisiae
lysate and analyzed using a 4 h reverse-phase separation, yielding
37 641 spectra,25 from which 10 000 spectra were randomly
sampled. These spectra were searched against a protein database
consisting of the predicted open reading frames from S. cerevisiae
(released 2004-04-02, 6298 proteins). The worm benchmark was
derived from a 24 h MudPIT analysis of Caenorhabditis elegans
proteins containing 207 804 spectra, from which 10 000 spectra
were randomly sampled. These spectra were searched against a
protein database consisting of the predicted open reading frames
from C. elegans and common contaminants (Wormpep v160,
27 499 proteins). The spectra and databases comprising these
benchmarks are available at http://noble.gs.washington.edu/
proj/tide.

Peptide indexes were generated from each benchmark protein
database for use with Tide and Crux. The indexes contained
tryptic peptides of length 6�50 amino acids and mass 200.0�
7200.0 Da. These same search parameters were applied to the
SEQUEST searches. Except where noted, a precursor mass
tolerance window of(3.0 Da and a fully tryptic peptide database
were used in all experiments. Tide and Crux experiments
were run with full XCorr calculation on all candidate matches.
SEQUEST experiments were run with the preliminary scoring
pass Sp.

3. RESULTS

3.1. The SEQUEST Algorithm and XCorr
The goal of peptide identification by database search is to label

each experimentally observed spectrum from an MS/MS run
with the peptidemost likely to have generated the spectrum. Two
sources of input are examined. The first is a collection of tandem
mass spectra, each with an observed precursor mass and one or
more possible charge states. The second is a collection of protein
sequences, usually called the database, regardless of the storage
mechanism. A successful identification of an observed spectrum
as a match to a candidate peptide sequence requires reasonable
correspondence between features of the observed spectrum and
theoretically computed features of the candidate peptide. The
SEQUEST algorithm approaches the task of peptide identifica-
tion in four steps.

First, for each input spectrum to be identified, candidate
peptides are retrieved from the database, based on the precursor
mass associated with the input spectrum. The precursor mass
of the observed spectrum must match the theoretical mass of
the candidate within a user-specified tolerance, defaulting to
(3.0 Da. If more than one possible charge state is given for the
precursor ion, then candidate selection is repeated for each
charge state. If the database is large, then many candidate
peptides will be identified for each input spectrum. The pairing
of a single input spectrum with a single candidate peptide is
termed a peptide-spectrum match (PSM).

Next, each observed spectrum is preprocessed as follows. A set
of bins, each of width 1.0005079 Da/charge, is laid over the full
range of the m/z values reported in the input file for the spectrum.
Each input MS/MS peak is bucketed into the nearest bin, which
retains only the highest intensity peak that fell into that bin.
Each bin’s intensity value is then replaced with its square root.
The range of bins from lowest m/z to highest is then divided
into 10 equally spaced regions. Within each region, the intensity
of each bin is normalized so that the most intense bin in every
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region has a value of 50. This completes the preprocessing step
performed on each spectrum.

Separately, a theoretical spectrum is computed for each
candidate peptide. The amino acid sequence, of length l , of
the candidate peptide is used to compute a theoretical mass for
each of the l � 1 b- and y-ions corresponding to all left and right
substrings of the amino acid sequence. The theoretical mass of
each of these ions is then bucketed into bins of width 1.0005079
Da/charge, just as for the observed spectrum. The intensity of
each of these b- and y-ions is given a value of 50. Additionally,
each of the following ions is computed and bucketed to complete
the theoretical spectrum:
• the two bins flanking each of the b- and y-ions each with
intensity 25,

• a peak with intensity 10 representing the neutral loss of
ammonia from each b- and y-ion,

• a peak with intensity 10 representing the neutral loss of
water from each b-ion, and

• each a-ion, with intensity 10.
For spectra with precursor charge of 3 or higher, doubly charged
versions of each of the above ions are included in the theoretical
spectrum.

The last step in the SEQUEST algorithm is to compare the
preprocessed observed spectrum and candidate theoretical spec-
trum for each peptide�spectrum match. Preprocessing of an
observed spectrum or generating a theoretical spectrum for a
candidate peptide yields a peak-intensity vector, any pair of which
may be compared. After a spectrum is processed to obtain a
length-N vector u and a candidate match’s theoretical spectrum is
computed to get another vector v, whereN is the number of bins,
the following function is computed to obtain the XCorr as the
score for the peptide-spectrum match:

XCorrðu, vÞ ¼ Æu, væ� 1
150 ∑

75

τ¼�75
∑
N

i¼ 1
viui�τ

For each spectrum, the PSM with the highest XCorr score is
output to the user.

SEQUEST mitigates the slowness of computing XCorr for
every PSM by computing an approximate preliminary score
(Sp) for each peptide�spectrum match that it collects; only
the 500 highest scoring candidates by Sp are fully scored by XCorr.
Tide does not compute Sp because it is able fully to compute
XCorr extremely efficiently; computing Sp as a preliminary score
would not be expected to improve Tide’s speed.

For most applications, the database of proteins, from which
candidate peptides are derived, is considered to change infre-
quently. As a consequence, an arbitrary amount of precomputa-
tionmay be performed on the peptide set before input spectra are
to be analyzed. Several recently developed search tools, including
TurboSEQUEST, Crux, and Tide, take advantage of this oppor-
tunity by indexing the peptide set by precursor mass ahead
of time.

Crux, Tide, and various versions of SEQUEST all implement
the algorithm above, but there are some differences among them.
Crux’s scoring is not identical to SEQUEST, though it is similar;
see ref 4 for a comparison of Crux and an early version of
SEQUEST.

Through successive optimizations, a consistent aim of Tide
was very precise fidelity to Crux’s results and XCorr computation,
though Crux, in turn, adhered more loosely to SEQUEST.
Tide’s scoring is identical to Crux’s when Crux is compiled with

double-precision floating-point arithmetic. Figure 5 compares
the XCorr scores computed by Tide against those computed by
two different versions of SEQUEST. These scoring differences
between Tide and SEQUEST are no bigger than those between
the two SEQUEST versions, which are compared at the bottom
of the figure.

Tide supports searching databases with variable post-transla-
tional modifications (PTMs). At indexing time, the user may
indicate a list of possible PTMs to include in the index. The user
specifies each variable modification as a triple: a limit on the
number of occurrences per peptide, a set of amino acids that are
subject to the modification, and the corresponding mass. Multi-
ple variablemodification typesmay be specified. For example, the
specification “2M+16.0, 5STY+79.97” indicates that up to two
occurrences of methionine may be oxidized and up to five
occurrences of any residues serine, threonine, or tyrosine may
be phosphorylated. Peptides that are subject to the indicated
variable modifications will appear in the database multiple times,
reflecting the various modified forms.

In both SEQUEST and Tide, including PTMs increases the
number of candidate peptides exponentially in the number of
modifiable amino acids per peptide. As with SEQUEST and
other database search engines, the user is encouraged to use
variable modification search judiciously so as not to create large
numbers of false positive matches or increase search times expo-
nentially. Tide scores a match with a modified peptide exactly as
it would the unmodified peptide, except that it accounts for the
change in mass of the modified residues.

3.2. Baseline Version of Tide
An initial rewrite of the search method of Crux, called Tide-v0,

was produced with the goal of precisely matching theXCorr scores
produced by Crux, but with a greatly simplified code base, more
easily amenable to human analysis, machine timing and profiling,
and staged optimizations. Tide-v0 served as a starting point for
the sequential introduction of a series of optimizations described
in section 3.3. The operation of Tide-v0 was as follows, schema-
tized by the data flow in Figure 1A.

The left side shows the progression from a protein set,
supplied as a FASTA file, to a set of peptides, to a set of theo-
retical spectra. Each of these data sets is computed in turn from its
parent data set in the diagram. The computational digestion of
the proteins and the ordering of the peptides are precomputed
during an indexing phase that needs to be run only once for a
given protein database. During the indexing phase, each protein
in the input FASTA file is computationally digested into peptides
according to user-specified parameters, which may specify en-
zyme and minimum and maximum peptide sizes.

The right side of the figure shows the set of observed spectra,
including precursor m/z and possible charge states, which are
input at search time. As each spectrum is considered in turn,
candidate peptides are identified, based on precursor mass, from
the precomputed index, and a theoretical spectrum is calculated
for each candidate. The bottom of the figure shows the observed
spectra and theoretical spectra matched by precursor mass and
then scored by XCorr. For spectra with multiple possible charge
states, Tide simply iterates over each such state and considers it
in turn.

3.3. A Series of Optimizations
We now briefly describe the successive algorithmic optimiza-

tions and techniques incorporated in Tide, showing the course of
development from Tide-v0 to the current version of Tide. The
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reader interested in more detailed descriptions of the individual
optimizations should refer to the Supporting Information.
• Sparse representation of theoretical peaks. Each peptide’s
theoretical spectrum consists of 10 peaks for each amino
acid in the peptide, for each charge state, corresponding to
the major ion types and the related neutral losses. Since
there are roughly 1000 mass/charge buckets (depending on
machine settings), and since most peptides are short (under
20 amino acids), the theoretical spectrum is typically sparse,
so Tide uses a sparse representation of the theoretical peaks.
This change enabled another technique, making theoretical
peaks 5-fold sparser, as described below.

• Heapify to find top matches. As Crux finds candidate
peptide�spectrum matches, it adds them to an array, which
it sorts to find the best five matches. In place of this sort,
Tide uses a heapify operation which requires linear time
rather than theO(n log(n)) time required by the sort to find
the top matches.

• Linearizing background subtraction. Tide linearizes the
double loop that calculates XCorr, as described in the Sup-
porting Information. At the stage it was introduced, this
speedup reduced the total running time by about 47% (see
line 5 in Table 1).

• Caching multiplications. The XCorr calculation requires
computing a dot product between the observed spectrum
with each candidate theoretical spectrum. Tide exploits the
fact that the theoretical peaks may have one of only three
possible intensities: 10, 25, or 50. A simple caching scheme
thereby allows for the elimination of multiplications during
the dot product computation.

• Join with rolling window. Before any matching begins, Tide
reads the observed spectra into memory and sorts them by
mass. In case a spectrum has multiple possible charge states,
it appears in the sorted array once for each charge state, as
the join is performed on the neutral (uncharged) mass. After
the spectra are sorted, Tide iterates in parallel over the
spectra and the presorted candidate peptides. Iteration in
this fashion creates a “rolling window”, which occupies only

as much memory as is required to store a window’s worth of
theoretical spectra. This strategy, which is illustrated in
Figure 1B, enables reuse of the computation of the theore-
tical spectra so that no theoretical spectrum need ever be
computed more than once.

• Making the theoretical peaks vector 5-fold sparser. Theore-
tical spectra in the SEQUEST algorithm occur in groups
corresponding to cleavage events, with somewhat predict-
able spacing among the peaks within a group. Tide takes
advantage of such peak groupings to represent the complete
set of theoretical peaks even more sparsely. This is done by
adding together the peaks in a group as part of the spectrum
preprocessing step. Details are given in section 7 of the
Supporting Information.

• Fixed point arithmetic. Rather than compute the dot
product in double-precision floating-point arithmetic, Tide
uses fixed-point arithmetic. To do this, Tide multiplies each
entry in the spectrum by a large constant (107) and rounds
to the nearest integer. The constraints imposed by the
normalization procedure ensure against underflow or over-
flow, and the fact that the dot product is a simple summation
assures numerical stability. We therefore achieve the same
results as Crux does to at least five or six decimal places.

• FIFOmemory allocator. Profiling of a larger data set showed
that significant time was being spent in memory heap opera-
tions, many of which were tied to allocating and deallocating
space for theoretical spectra and associated data. Therefore,
Tide includes a specialized first-in-first-out (FIFO) memory
allocator that performs well on data associated with a queue.
Details are given in section 9 of the Supporting Information.

• Compiled dot-product code. Following the above speed
improvements, profiling revealed that most of the remaining
time (about 60%) was spent in the dot product computa-
tion. Although this code had already been optimized twice
(using cache lookups instead of multiplication operations,
and using two such lookups rather than three), testing still
showed that unrolling the loop and hard-coding specific
values for the array of theoretical peaks was about twice as

Figure 1. Data flow in Tide before and after optimization.
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fast. To take advantage of this opportunity, Tide performs a
run-time compilation for each theoretical spectrum to x86
machine code to execute the sum with preset values. The
appropriate code is generated in a buffer for each candidate
peptide, and the program is instructed to jump to the buffer
to run this peptide-specific dot-product code.

Table 1 shows timing results in the actual order these changes
were introduced to Tide, with later optimizations often building
upon earlier ones. Each line shows the performance change
following the incorporation of perhaps a few changes at a time.
Figure 2 shows the profile of major program components at
various key points along the way.

The following features of the timing table bear some further
exposition. The earliest working version of Tide shows a 45-fold
improvement over the run-time of Crux. A substantial portion of
this dramatic improvement likely reflects artifactual slowness of
Crux that happened to be present at the time Tide got under way,
and was since corrected in Crux. Newer versions of Crux, such as
the one used for final timing measurements, are much faster.

Artifacts, however, do not completely account for the dramatic
45-fold speedup of Tide-v0 over Crux. The 3 Da mass window
and full XCorr scoring for all candidates are settings for which
Cruxmay not have been optimized, and they are time-consuming
settings. Tide’s code was also a lot more compact at this point
(about 1200 lines, compared to Crux’s ∼32 000), and perhaps
mere removal of some code complexity helped this initial number.
The initial version of Tide also implemented heapify, described
above; it used a compressed peptide file that holds pointers to all
the proteins in which it is found; and it managed for these data sets
to read all the compressed peptides intomemory, eliminatingmost
disk seeks. All these changes contributed to the immediate gains
over Crux, but no separate measurements were made for each of
these improvements. Versions of Tide from Table 1 line 6 onward
do not require the index to fit into memory.

About midway through Tide’s development, parsing of the
input file was jettisoned, and the input spectra were represented

by an uncompressed binary file. This was done because the
particular input file format is incidental to the main search
algorithms, there are many input file formats available, and
optimizing the ms2 format in particular fell outside the scope
of efforts on Tide. The timing numbers in two lines of Table 1
reflect this decision: Line 3 includes the parsing for the first time
(a binary file was used beforehand), and Line 7 removes it again.

The sparse difference vector representation, shown in line 9 of
Table 1, introduced a slight time penalty, but was implemented as
a prerequisite for storing the sparse vector differences to disk
(line 11 of Table 1). The two changes taken together performed
very well.

Note also that running times were not always collected for
both yeast and worm, as a profile of one or the other was often
enough to discern where to focus effort; but at least one or the
other time is always reported, as is the relative time improvement
between versions. An average is shown in cases where both yeast
and worm times were measured.

3.4. Final Timing Comparisons
Figure 3 shows the results of timing experiments for two

SEQUEST versions, Crux, and Tide, performed on the bench-
mark data sets. For reference, timing comparisons are shown to
X!Tandem and toOMSSA, although these software packages use
different scoring methods than the SEQUEST method.

Compared to the earlier version of SEQUEST (version 2.8,
1999), Tide’s speedup is over 1000-fold in all cases, reaching as
high as 2500-fold for the worm benchmark with fully tryptic
digestion. The increase is more modest, but still dramatic, with
respect to the recent SEQUEST version (November 2009),
especially with respect to semitryptic digestion (as little as 27-
fold speedup for the worm set with 0.25 Da mass tolerance).
The geometric average speedup for all data sets of Tide over
the recent SEQUEST build is 54-fold. The earlier version of
SEQUEST (1999) did not support semitryptic enzyme diges-
tion, and corresponding entries are blank in Figure 3.

Table 1. Wall Clock Time after Successive Optimizationsa

text description worm yeast % change

1 Crux baseline (4/14/09) 5:47:37.9 36:03.5

2 sections 3.2 and 3.3 rewrite including deduplication of peptides; heapify; compressed peptides file;

and eliminating seeks

7:39.0 2:41.6 45.4-fold

reduction

3 Supporting Information section 1 sparse representation of theoretical peaks [Note that input file parsing is

introduced here, and removed later]

1:50.5 �31.6%

4 fixed-capacity arrays for theoretical peaks; better memory management 1:13.4 �33.3%

5 Supporting Information section 3 linearizing the background subtraction for XCorr computation 0:38.9 �47.2%

6 Supporting Information section 6 active peptide queue and sorted spectra (rolling window join) 0:38.8 0:13.8 �64.5%

7 section 3.3 eliminate input file parsing [see text; and compare line 3 above] 0:25.6 �22.2%

8 omit calculation with theoretical ions outside spectrometer’s range 0:23.7 �7.4%

9 Supporting Information section 7 sparse difference vector representation 0:24.7 0:09.0 4.2%

10 Supporting Information section 5 array striping to eliminate one lookup during dot product calculation 0:20.4 �17.4%

11 Supporting Information section 7 Store the vector diffs to disk instead of calculating at runtime 0:15.5 0:05.9 �24.0%

12 Supporting Information section 8 fixed-point arithmetic 0:14.7 0:06.0 �5.2%

13 Supporting Information

sections 9 and 10

FIFO memory allocator and run-time compiled dot-product code 0:8.6 0:4.4 �34%

aOptimizations in the order they were introduced into Tide, and the measured improvement introduced by each. In several cases, earlier optimizations
were prerequisite for later ones: for example, line 9 showed a slight degradation, but was prerequisite for the gain in line 11.Where indicated, the reader is
referred to a section of the text or Supporting Information for details. These measurements, taken during Tide’s development, were done on a different
machine than the one used for final timing measurements (see section 2).
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Crux shows intermediate performance between that of SE-
QUEST and Tide. Tide ran at least 29-fold faster than Crux in all
cases, and as high as 145-fold in the case of the yeast benchmark
with semitryptic digestion and a ( 3.0 Da precursor tolerance.
With respect to the original SEQUEST version, Crux was as
much as 87 times faster (worm benchmark, full digestion, 0.25
Da tolerance). In comparison to the recent indexed version of
SEQUEST, Crux’s performance was mixed, with Crux perform-
ing faster on three benchmarks and indexed SEQUEST perform-
ing faster in five. However, in no case was the performance
difference between Crux and the recent SEQUEST more than a
factor of 2.

Although Tide performs very well in comparison to
X!Tandem and OMSSA (a geometric average of 17 times faster
than X!Tandem and 43 times faster than OMSSA over all the
benchmark data sets), marked differences in scoring methods
among these systems make fair comparisons difficult and are
beyond the scope of this paper.

Four of the software packages discussed here make use of
indexing to achieve fast execution. However, the relative
speeds of three of these tools (indexed SEQUEST, Crux, and
X!Tandem) fall within a relatively narrow range of one another,
spanning an average (geometric mean over all benchmarks)
factor of 4 from the slowest to the fastest. Thus, Tide’s achieve-
ment of a further 17-fold over the fastest of these methods is
especially noteworthy.

Figure 4 shows the results of timing experiments comparing
Tide to the same two versions of SEQUEST when modified
peptides are included in the search. The benchmark sets the

worm and yeast data sets, each with a ( 3.0 Da mass tolerance
window including fully tryptic peptides. Modified versions of
each peptide were considered in this experiment, with up to two
phosphorylations (+80 Da) per peptide at occurrences of serine,
threonine, or tyrosine. In these experiments, Tide’s relative speed
is an average of over 708-fold over SEQUEST and 253-fold over
the indexed version of SEQUEST.

4. DISCUSSION

In this work, we have described a software implementation of
the SEQUEST algorithm that searches at a rate of hundreds of
spectra per second on a single CPU. This software thus repre-
sents more than a 1000-fold improvement in speed relative to a
recent single-CPU version of SEQUEST.

We have not directly compared Tide against the commercial
indexed version of SEQUEST, TurboSEQUEST.26 This is
primarily because SEQUEST was implemented and validated
on a Linux platform, whereas TurboSEQUEST is only available
running under Windows. However, we have shown comparisons
to an indexed version of SEQUEST that runs under Linux
but is not widely available. Furthermore, Crux was previously
compared to TurboSEQUEST, and the two programs were
demonstrated to operate at approximately the same speed.4

Thus, the results shown in Table 1 suggest that Tide, when
ported to Windows, will perform significantly faster than Turbo-
SEQUEST.

Likewise, we have not compared Tide’s speed with the speed
of the full gamut of competing database search tools, except

Figure 2. Profile of various development stages of Tide for the worm benchmark (10 000 spectra). Each profile shows how much computing time was
spent in each of the major phases of Tide’s operation at various points during development. Such profiles aided in deciding how best to proceed with
optimization efforts. Profiles shown are (a) Tide-v0; (b) before and after linearizing background subtraction (Supporting Information section 3);
(c) before and after 5-fold sparser representation, and after storing d to disk (Supporting Information section 7); and (d) the current version of Tide. For
each plot, the (diminishing) total execution time is indicated via the y-axis scale.
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for X!Tandem and OMSSA as two illustrative examples. This is
because the focus of this work is efficiency, subject to the
constraint that Tide remains faithful to the SEQUEST method.
X!Tandem, OMSSA, and other database search tools do not
follow the SEQUEST scoring method. To compare different
search algorithms in a reasonable fashion would require jointly
considering both efficiency and accuracy. Accurate identification
requires not just a database search tool, but also one or more
postprocessing steps that integrate information across the entire
mass spectrometry experiment, taking into account information
about the spectra, peptides, and proteins. Therefore, the most
useful comparison of search speed and accuracy should be

performed at the level of a complete identification pipeline. Such
an evaluation is beyond the scope of the current study.

The speed improvements introduced in Tide are especially
effective in common input cases but are less dramatic in some
contexts. Shotgun proteomics experiments commonly require
enzymatic digestion of the sample. In searching for enzymatic
peptides, Tide performs up to thousands of times faster than
SEQUEST. In the nonenzymatic case Tide is only about 7�8
times faster than the recent SEQUEST version as tested, a far
more modest gain. However, Tide was not specifically optimized
for this setting, and other opportunities for improving Tide’s
algorithm might exist.

For larger peptide databases, Tide’s computation time per
spectrum grows linearly in the size of the peptide database. This
is because Tide evaluates all candidate peptides against each
spectrum. Larger databases will yield proportionately larger sets
of candidate peptides and will take proportionately longer to
compute, under the same settings. The worm benchmark con-
sists of 27 499 proteins, comparable to the number of proteins in
the human genome, although consideration of protein isoforms
in human would yield more peptides.

Most of Tide’s optimizations are most effective in cases where
there are many candidate peptides per spectrum, because such
cases provide opportunities to reuse the results of earlier
computations. The number of candidates per spectrum will
generally increase with the scale of the search problem: larger
protein database, wider precursor tolerance, decreased enzyme
specificity, and the inclusion of post translationalmodifications in
the database. With problems of greater scale, speed becomes
increasingly important, and Tide’s results are particularly en-
couraging in this context.

Tide’s precise fidelity to Crux’s scoring introduced constraints
on the approach to optimization that would not have existed had
Tide’s output been allowed to vary slightly from Crux’s. On the

Figure 3. Performance of Tide compared to SEQUEST, Crux, OMSSA, Indexed SEQUEST (11/2009), and X!Tandem. Performance was measured in
eight settings, varying the percursor mass tolerance window, the digest (fully tryptic candidate peptides or semitryptic), and the data set (C. elegans,
“worm data set”, or S. cerevisiae, “yeast data set”; see Materials andMethods). Bar heights in log scale show spectra processed per second, with numerical
results given below. Each experiment was repeated at least three times with average timings shown, except for the X!Tandem experiments. Because
SEQUEST runs relatively slowly, all SEQUEST experiments, as well as Crux experiments using semitryptic digestion, were performed with 100
randomly selected spectra. The remaining experiments, including all Tide experiments, were performed using 10 000 benchmark spectra.

Figure 4. Performance of Tide compared to SEQUEST and Indexed
SEQUEST (11/2009) on benchmark data sets with variable modifica-
tions. Bar heights in log scale show the number of spectra processed
per second. The same benchmark data sets were used as in Figure 3, but
with up to two occurrences per peptide of phosphorylated residues
serine, threonine, or tyrosine. Tests were run with a ( 3.0 Da mass
window and full tryptic digestion. As in Figure 1, SEQUEST experi-
ments were run with 100 randomly selected spectra, whereas Tide
experiments used 10 000 benchmark spectra.
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other hand, Crux’s output is less faithful to SEQUEST’s output.
Minor scoring differences arise even among various versions of
SEQUEST (Figure 5), and were shown4 to have little overall
effect on accuracy. An informal investigation showed that the
small differences between Crux and SEQUEST were mostly due
to minor bugs in one or the other program, and that such
differences have no impact on Tide’s speed.

Perhaps the greatest operational difference between Tide and
SEQUEST is that Tide does not compute SEQUEST’s pre-
liminary scoring function, Sp. The Sp score was introduced into
SEQUEST to speed up computation.1 However, Tide is fast
enough that it can efficiently compute the full XCorr calculation
for all PSMs and does not require (nor is it likely to benefit
greatly from) a preliminary scoring pass using Sp. Consequently,
whereas SEQUEST may miss a candidate peptide with the
highest XCorr because of the Sp screen, Tide does not have this
limitation.

Note that, in some contexts,25,27,28 the Sp value is needed for the
top few PSMs as an additional scoring signal. Though Sp, which is
computationally simpler than XCorr, is not currently included in
Tide, the cost of calculating Sp for the top few PSMs is marginal.

Most of Tide’s improvements are highly optimized for XCorr
only and are not likely to be applicable to scoring methods used
in other peptide identification software programs. On the other
hand, some optimizations included in Tide, such as the compact
index, the rolling-window join, and storing exceptional cases to
disk, will generalize to any type of database searching. But the
specific methods for reducing the number of multiplications and
memory lookup operations, caching partial results, grouping
related theoretical peaks, on-the-fly compiling of the dot-product
code, and the like are highly specific to the XCorr method.

Because running SEQUEST is computationally intensive,
Tide offers the possibility to run analyses that heretofore have
been prohibitively expensive. Thus, Tide creates the potential
for smaller laboratories to conduct more sophisticated experi-
ments, to sidestep purchasing and managing large computing
clusters, and to keep a spectrometer running full-time when
analysis would otherwise be a bottleneck. Tide also opens the
possibility of full peptide database search in real time, as spectra
are acquired by the instrument. Fast software also creates
opportunities for further improvements of the identification
methods themselves. By analyzing larger data sets, researchers

Figure 5. Comparison of XCorr scores from Tide and from two versions of SEQUEST. From two different data sets (yeast and worm), 100 spectra were
selected at random for analysis by SEQUEST and by Tide. Searches were performed using a database of tryptic peptides from the corresponding
organism, allowing up to two phosphorylations per peptide at occurrences of STY. The figure includes the top five PSMs per spectrum, as reported by
SEQUEST. For each PSM, we plot the SEQUEST XCorr versus the XCorr computed by Tide. In the case of the bottom figures, we plot the SEQUEST
1993 XCorr scores against those computed by SEQUEST 2009.
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can gather more data and, in turn, devise better analytical
methods.
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