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ABSTRACT

Summary: The advent of high-density, high-volume genomic data

has created the need for tools to summarize large datasets at

multiple scales. HMMSeg is a command-line utility for the scale-

specific segmentation of continuous genomic data using hidden

Markov models (HMMs). Scale specificity is achieved by an optional

wavelet-based smoothing operation. HMMSeg is capable of hand-

ling multiple datasets simultaneously, rendering it ideal for integrative

analysis of expression, phylogenetic and functional genomic data.

Availability: http://noble.gs.washington.edu/proj/hmmseg

Contact: rthurman@u.washington.edu

1 INTRODUCTION

The convergence of the genomic era and the advent of high-

throughput biological and chemical assays has created a wealth

of genomic data, much of which is presented in continuous,

time-series-like fashion across the genome. Often, it is desirable

to extract simplifying summary information from such data.

One summarization approach involves segmenting the data into

a small number of discrete states based on the continuous

output values. This segmentation may be accomplished in an

unsupervised fashion using hidden Markov models (HMMs).

For example, a chromosome-wide continuous profile of bulk

RNA output generated using tiling DNA microarrays may be

partitioned by segmenting the chromosomal coordinates into

three states, corresponding to regions of low, medium and high

transcription levels. This type of categorization is often

desirable in the context of elucidating broad, large-scale

trends in the data. In this case, it may be preferable to

smooth the data to a specified scale before segmentation, in

order to eliminate spurious state transitions resulting from

isolated fine-scale features (see Fig. 1).
HMMSeg is a tool for segmenting continuous genomic

datasets on a scale-specific basis using HMMs. Scale specificity

is achieved by an optional smoothing step using wavelets

(see below). HMMSeg provides multivariate capability,

computing a single segmentation based on multiple datasets

simultaneously defined on a common set of genomic

coordinates.
As a platform for segmenting a wide variety of genomic data,

HMMSeg is distinguished from existing programs using

HMMs, which typically fall under two categories: toolboxes

for applications in any field, such as htk (Young et al., 1995)

and GHMM (http://ghmm.org); or biological application-

specific tools that use HMMs, such as glimmerHMM

(Majoros et al., 2004), for gene finding and HMMer

(Eddy, 1995) for sequence analysis.

1.1 Hidden Markov models

An HMM is a statistical model in which data are assumed to be

generated by a stochastic process defined by a predetermined

number of hidden states (Rabiner, 1989). Each state is defined

by an emission distribution, from which data values are

generated. The model also specifies probabilities for transition-

ing between states. The parameters defining the emission and

transition probabilities are typically learned from the data by

expectation maximization (EM). Given the learned parameters,

there are two common methods for determining the state labels

for each observation: the Viterbi algorithm, which finds the

single most probable path (sequence of states); and posterior

Fig. 1. Effect of wavelet smoothing on HMM segmentations.

(a) Histone modification H3K4me1 (average raw data resolution

�900 bp). (b) Two-state segmentation of the data in (a) with black

and white bars representing the two different states. (c) Two-state

segmentation of data in (a) following 20 kb wavelet smoothing.

(Data excerpted from Thurman et al., 2006.)
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Fig. 2. Multi-datatype functional domains defined using HMMSeg. Shown in this 1.7 Mb region on chr 21 (ENCODE region ENm005) are raw

data (top) and 64 kb smoothed data (bottom) for DNA replication timing (green), RNA transcription (blue) and histone modifications

H3K27me3 (purple) and H3ac (orange). Row nine shows a two-state Viterbi segmentation based on all four datasets with active domains in black

and inactive in white. Note the concentration of genes (bottom row) within active domains. (Data displayed in UCSC Genome Browser with colors

added later.)
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decoding, which computes the most likely state at each point of
the sequence. HMMSeg uses Gaussian emission distributions,
with diagonal covariance for multiple datasets (assuming
independence between variables), and supports both the

Viterbi and posterior decoding methods for state assignments.

1.2 Wavelet smoothing

Wavelets are a mathematical tool for multi-scale analysis

(Percival and Walden, 2000). Though first used in practical
applications in the fields of engineering and signal processing,
in recent years wavelets have found many applications in
computational biology (Liò 2003). We apply scale-specific

smoothing using a variant of the discrete wavelet transform
(DWT) called the maximal overlap discrete wavelet transform
(MODWT) (Percival and Walden, 2000). Both the DWT and

MODWT can be used to decompose a given signal via
multiresolution analysis into a sum of scale-specific signals. In
contrast with other smoothing techniques, wavelet smoothing is

essentially the process of subtracting out the small-scale
behavior rather than averaging it. HMMSeg uses the LA(8)
family of wavelets for all wavelet transforms. The choice of

wavelet scale is application dependent, and can be informed by
prior biological information about the scale of features of
interest, or by trial-and-error to achieve, say, a desired segment
length distribution. See the website for further details on

wavelet smoothing.

2 DESCRIPTION OF FUNCTIONALITY

HMMSeg provides a command-line interface. The input to

HMMSeg is one or more collections of files in either single
column or tab-delimited BED format. Each collection repre-
sents a different dataset; multiple collections trigger a multi-

variate segmentation. After reading the data from the input
files, HMMSeg optionally smooths the data at a user-specified
scale using the MODWT. In this case, wavelets require that the

input data be evenly spaced. There is also an option to smooth
the data without HMM training.
HMMSeg proceeds to train a completely connected HMM

on the data by using EM. By default, the HMM has two states;
models with more states may also be specified. The Gaussian
parameters and transition probabilities are initialized ran-
domly, although the user may provide model parameters to

replace or initialize EM training. Training may be repeated
multiple times from different random starts, in which case
the model with the highest total likelihood is selected. Based on

the final model, observations are assigned to states using the
Viterbi algorithm or posterior decoding.
The program outputs the trained model plus the state

assignment for each observation. If the user provides input data
in BED format, then the segmentation is output in wiggle
format, suitable for display in the UCSC Genome Browser
(Kent et al., 2000). The wiggle file contains separate tracks for

the original data, smoothed data, the state assignments and (for
the posterior decoding method) the probabilities of each data
point belonging to each state.

HMMSeg is implemented in Java for platform independence.
It has been successfully tested on Windows and UNIX-style

systems. Validation and accuracy test results are available on

the website.

3 EXAMPLE

In a recent study (Thurman et al., 2006), we analyzed a number

of independently generated experimental datasets produced

under the NHGRI ENCODE project (ENCODE Consortium,

2004), whose ultimate goal is to identify all of the functional

elements in the human genome. Currently the ENCODE

project is in its pilot phase, analyzing 44 regions spanning

30MB (�1%) of the genome (ENCODE Consortium, 2006).

Our aim was to integrate multiple functional datatypes to

create a functional domain map of the ENCODE regions. We

used HMMSeg to segment the data at the 64 kb scale into two

states, interpreted a posteriori as functionally ‘active’ or

‘inactive’. (Note, however, that in the study wavelet smoothing

was performed on all data except for replication timing, as a
pre-processing step.) We successfully applied this technique to

individual datatypes and up to five datasets simultaneously.

Examples of large-scale domains delineated by HMMSeg using

MODWT smoothing on all datasets are pictured in Figure 2

(see website for details). Here we see the advantages of using

HMMs over simple thresholding techniques, the logic of which

breaks down in scenarios with multiple datasets and few states.

This approach highlights the potential for integrating multiple

functional genomic datatypes with widely varying experimental

resolution.
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