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Abstract

The function of an unknown biological sequence can often be accu-
rately inferred by identifying sequences homologous to the original se-
quence. Given a query set of known homologs, there exist at least three
general classes of techniques for finding additional homologs: pairwise se-
quence comparisons, motif analysis, and hidden Markov modeling. Pair-
wise sequence comparisons are typically employed when only a single
query sequence is known. Hidden Markov models (HMMs), on the other
hand, are usually trained with sets of more than 100 sequences. Motif-
based methods fall in between these two extremes.

The current work introduces a straightforward generalization of pair-
wise sequence comparison algorithms to the case when when multiple
query sequences are available. This algorithm, called Family Pairwise
Search (FPS), combines pairwise sequence comparison scores from each
query sequence. A BLAST implementation of FPS is compared to rep-
resentative examples of hidden Markov modeling (HMMER) and motif
modeling (MEME). The three techniques are compared across a wide
range of protein families, using query sets of varying sizes. BLAST FPS
significantly outperforms motif-based and HMM methods. Furthermore,
FPS is much more efficient than the training algorithms for statistical
models.
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1 Introduction

The Human Genome Project and similar work on other species are producing
biological sequence data at an accelerating rate. However, this data represents
only a first step toward the goal of understanding the functions of these genetic
sequences. Computational methods, although they will probably never replace
the wet lab techniques of molecular biology, provide an important set of tools
for inferring function.

One of the most effective means of inferring the function of an unidentified
protein is to ask what functions are performed by homologous proteins. Two
proteins are homologous if they share a common ancestor. Since the actual
sequence of the common ancestor is unavailable, sequence homology can only
be inferred by statistical means.

The most widely used means of inferring homology involves performing pair-
wise comparisons between a single query sequence and a sequence in a pro-
tein database. Dynamic programming algorithms, such as the Needleman-
Wunsch [28] and Smith-Waterman algorithms [39], or related heuristic algo-
rithms, such as BLAST [2, 3] and FASTA [33], can be used to assign to each
sequence in the database a score indicating the likelihood that this sequence is
homologous to the query sequence.

Because homology inferences are based upon statistical measures, they be-
come increasingly uncertain when the evidence for homology is weak. The
twilight zone of sequence similarity sets the boundary of confidence levels for
detecting evolutionary relatedness of proteins [15]. For most pairwise alignment
programs, the twilight zone falls between 20-25% sequence identity [14].

In order to push back the twilight zone and thereby discover more remote
homologs, additional information is needed. Family-based methods of homology
detection leverage the information contained in a set of proteins that are known
to be homologous. In a diverse family of proteins, individual members may have
very low pairwise sequence similarity and hence might be missed by a pairwise
analysis. An algorithm that uses a representative set of sequences from the
family, however, can uncover these missed relationships because homology is
transitive [35, 3].

The simplest means of detecting homologs using a set of related query pro-
teins is to perform multiple pairwise comparisons. In the FPS algorithm, each
sequence in the database is compared with each sequence in the query set and
the resulting scores are combined into an overall score for that sequence, either
by taking the average or the best score from the set. This approach may be aug-
mented by adding the newly discovered homologs to the query set and iterating
until a transitive closure of the homology relationship is computed [40, 30].

More sophisticated homology detection methods involve two steps: first
building a statistical model of the family and then comparing that model to
each sequence in the database. For example, hidden Markov models (HMMs)
have been used extensively to model protein families [26, 10, 16]. These sta-



tistical models have a strong theoretical basis in probability and are supported
by efficient algorithms for training, database searching, and multiple sequence
alignment. The model parameters are learned via expectation-maximization,
and the homology detection algorithm is a form of dynamic programming. One
drawback to modeling proteins using HMMs is that they contain many free
parameters and therefore require a large amount of training data. A typical,
200-state HMM may contain on the order of 5000 trainable parameters. Ad-
equate training of such a model can require on the order of 200 homologous
sequences [13]. The use of empirically derived Dirichlet mixture priors [13, 38|
can partially offset the need for larger training sets.

The size of the model may be greatly reduced by focusing only upon regions
that are highly conserved across family members. Usually these regions, called
motifs, have been conserved by evolution for important structural or functional
reasons. As such, the motifs constitute a summary of the essential details of
the family of proteins. Motifs may be represented as regular expressions [8, 31],
or more generally as profiles [18] or position-specific scoring matrices, in which
each column in the matrix represents a distribution across the amino acids at
that position in the motif. These matrix models are formally equivalent to a
class of HMMs and hence may be learned via expectation-maximization [4] or
Gibbs sampling [27] from a set of unaligned protein sequences. Because motif-
based methods ignore the poorly conserved spacer regions between motifs, they
can be trained using smaller sets of related sequences.

This work compares the performance of each of these three homology detec-
tion methods and examines the extent to which each is dependent upon the size
of the query set. A BLAST-based implementation of FPS performs better than
both model-based methods. All three methods have difficulty recognizing larger
protein families. Also, larger query sets uniformly lead to improved homology
detection. Pairwise comparisons and hidden Markov models have difficulty rec-
ognizing families containing repeated elements. A version of FPS that selects
the best BLAST E-value score performs better than versions of FPS that use the
best bit score or the average E-value or bit scores. Overall, BLAST Family Pair-
wise Search provides excellent performance and is much more computationally
efficient than competing, model-based methods of homology detection.

2 Algorithm

The Family Pairwise Search algorithm, summarized in Figure 1, is a straight-
forward extension of pairwise sequence comparison that allows for multiple
multiple-sequence queries. FPS takes as input a query set of sequences known
to be homologous to one another, as well as a target database to be searched. In
the first phase of the algorithm, the database is searched separately with each
sequence in the query set. The result, for a query set of n sequences, is a set
of n similarity scores for each sequence in the database. The n scores are then



procedure FPS (query_set, database, compare_fn, combine_fn)
for i + 1 to size(database)
target < database][i]
score_set = {}
for j «+ 1 to size(query_set)
score < compare_fn(query_set[j], target)
score_set <— score_set U {score}
end
scores[i] = combine_fn(score_set)
end
return scores

Figure 1: The Family Pairwise Search algorithm.

combined to yield a final score for that database sequence. The output of FPS
is a scored version of the given database.

FPS is parameterized via two functions: a function that compares pairs of
sequences and a function that combines multiple query scores. In this work,
all pairwise sequence comparisons are carried out using BLAST. Presumably,
FPS’s performance could be improved by using the Smith-Waterman algorithm
instead. Multiple sequence scores are combined either by averaging or by taking
the best score. The choice of score combination function depends in part upon
the type of scores computed by the pairwise similarity algorithm. For example,
averaging E-values is unlikely to be effective, since the E-value does not scale
linearly with the degree of sequence similarity. Taking the maximum score has
the further advantage that it obviates the need for sequence weighting.

3 Methods

Protein families

A collection of 73 protein families [6] is used in the homology detection ex-
periments. These families were selected from the Prosite database [§] for their
difficulty, based upon the number of false positives reported in the Prosite an-
notations. The Prosite IDs and sizes of these families are listed in Appendix A.
The families range in size from 5 to 109 sequences, and from 949 to 58 015 amino
acids. The associated release of SWISS-PROT [9] contains 36 000 sequences and
nearly 12.5 million amino acids.

Attempts to model families of related proteins are necessarily biased because
the set of known protein sequences does not uniformly sample from the space of
existing family members. Sequence weighting schemes attempt to compensate



for this bias by assigning weights to individual sequences, usually based upon
the level of sequence similarity. Such schemes may significantly improve the
performance of homology detection algorithms [1, 37, 41]; however, Henikoff
and Henikoff [22] have shown that many weighting schemes perform almost as
well as one another. Accordingly, all the experiments reported here employ a
simple, binary weighting scheme based upon BLAST similarity scores [29]. This
approach is simple, since the highly similar sequences can be removed at once
before any analysis is performed, and leads to faster training, since the sizes
of the weighted training sets are reduced. For these experiments, a BLAST
similarity threshold of 200 is used. The sizes of the weighted Prosite families,
given in Appendix A, range from 1 to 73 sequences with an average of 10.7
sequences, and from 394 to 18 702 amino acids with an average of 4202.

For each family, nested query sets of sizes 2, 4, 8, 16 and 32 sequences are
randomly selected from the set of weighted sequences. This results in 73 query
sets of size 2, 57 sets of size 4, 35 of size 8, 16 of size 16 and 3 query sets of size
32. In addition, for each family a single, independent test set is constructed,
consisting of all family members not contained in the query sets.

Pairwise sequence comparison

For homology detection using Family Pairwise Search, gapped BLAST version
2.0 is used [2, 3]. BLAST is a heuristic approximation of a dynamic program-
ming optimization of maximal segment pair scores. The program is run with
its default parameters, including the filtering of low-complexity regions and the
use of the BLOSUMG62 scoring matrix. For each database sequence, BLAST
computes two scores, a bit score and an E-value. Initial FPS experiments are
carried out using the best (i.e., minimum) E-value score. However, the perfor-
mance of FPS using maximum bit scores and average E-value and bit scores
is also examined. For each database search, an expectation threshold of 1000
is used, and any database sequence that would have received an E-value larger
than 1000 is assigned an E-value of 1000 and a bit score of 0 (the lowest possible
bit score).

Motif analysis

Ungapped motifs are discovered using MEME version 2.1 [4] with the default
parameter settings from the web interface [20]. These defaults include empirical
Dirichlet mixture priors weighted according to the megaprior heuristic [5], a
minimum motif width of 12 and a maximum of 55, and a motif model biased
toward zero or one motif occurrence per sequence. A total of ten motifs is dis-
covered from each query set, and motif significance is judged using the majority
occurrence heuristic [21]: motifs that do not appear in more than half of the
query sequences are discarded. This heuristic excludes motifs that are specific



to subfamilies of the given query set. For eight-sequence queries, the heuristic
selects an average of 5.2 motifs.

Homology detection is performed using MAST [7, 6]. For each sequence in
the database, MAST computes a p-value for each given motif and combines
these values assuming that motif occurrences are statistically independent. The
resulting sequence-level E-value scores are used to rank the sequences in the
database.

Hidden Markov model analysis

Hidden Markov models of each query set are built using the HMMER, software
package version 1.8 [16]. Models are trained using expectation-maximization
coupled with simulated annealing. The default geometric annealing schedule is
used, and Dirichlet mixture priors are used in order to allow the models to be
trained with smaller training sets.

Preliminary experiments showed that, of the four search programs provided
in HMMER, hmmsw consistently provides the best results when searching pro-
tein databases. That program uses a modified form of the Smith-Waterman
algorithm to search for sequence-to-model matches, allowing partial matches to
either the sequence or the model. Thus, hmmsw performs a semi-local search.
For each database sequence, the program returns a log-odds scores in bits.

Evaluating search results

Each homology detection experiment returns a score-labeled version of the
database. For BLAST FPS, sequences are labeled with the combined pair-
wise score, as described above. For MAST, sequences are labeled with E-values,
and for HMMER, sequences are labeled with log-odds scores. The database is
then sorted according to these scores, and each sequence in the sorted database
is marked with a “1” or a “0,” indicating whether that sequence appears in the
Prosite listing for the current family. In order to test the ability of the homol-
ogy detection algorithms to generalize from the query set, all family members
that do not appear in the independent test set are eliminated from the sorted
list. The resulting, purged sequence of bits represents the homology detection
algorithm’s ability to separate novel family members from non-family members.
Perfect performance corresponds to a series of 1s followed by a series of Os.
This bit sequence is subjected to two forms of analysis. The first is a modified
version of the Receiver Operating Characteristic, called ROCso [19]. The ROC
score is the area under a curve that plots true positives versus true negatives
for varying score thresholds. ROC analysis combines measures of a search’s
sensitivity and selectivity. The ROCsq score is the area under the ROC curve,
up to the first 50 false positives. This value has the advantages of yielding a
wider spread of values, of requiring less storage space, and of corresponding
to the typical biologist’s willingness to sift through only approximately fifty



false positives. ROCs5q scores are normalized to range from 0 to 1, with 1.0
corresponding to the most sensitive and selective search.

In addition to ROCj5( analysis, each homology detection method is evaluated
using the equivalence number [34]. The equivalence number is the number of
false positives given by a database search when the threshold is set so that the
number of false positives equals the number of false negatives. To compute the
equivalence number from the sequence of bits described above, a mark is moved
along the sequence until the number of Os to the left of the mark equals the
number of 1s to the right. Perfect separation corresponds to an equivalence
number of 0, and the maximum possible equivalence number is the size of the
family. In the results reported here, equivalence numbers are scaled to range
from 0 to 1 by dividing by the size of the family. This allows equivalence numbers
from homology searches for variously sized families to be combined.

4 Results

Figure 2(a) shows the average ROCjsq scores for each homology detection method
on all 73 protein families in the study. Also included are ROCsq scores from
a BLAST search using a single sequence randomly selected from the smallest
query set for the family. In comparing distributions of scores, a paired t test
is used, and differences are deemed significant at a 1% confidence level. In
Figure 2(a), BLAST FPS significantly outperforms all other methods for query
set sizes of 2, 4 and 8 sequences. At a query set size of 16, BLAST FPS
and MAST perform approximately as well as one another. Only three families
contain more than 32 weighted members, so the differences between techniques
at that query set size are not significant. Considering ROCsq scores from all
183 query sets together, BLAST FPS performs significantly better than MAST
and HMMER, and MAST performs better than HMMER.

In Figure 2(b), the same homology detection results are analyzed using
equivalence numbers. Recall that, unlike ROC5¢ scores, a lower equivalence
number is better. Hence, the two methods of analysis closely agree as to the
relative performance of the three homology detection methods. However, the dif-
ferences between normalized equivalence numbers are not as significant. Overall,
BLAST FPS still performs better than MAST, which in turn performs better
than HMMER. However, BLAST FPS is only significantly better than MAST
for query sets of size 2 (1% confidence) and 8 (5% confidence). HMMER per-
forms significantly worse than BLAST FPS and MAST for all query set sizes
except 32.

One unexpected characteristic of Figure 2 is the downward trend of the
scores as the query set size increases. However, this trend is an artifact of the
presentation of the data: the 73 2-sequence queries contain many sequences from
very small families. For these small families, the task of homology detection is
relatively easy. The sixteen 16-sequence query sets, however, each correspond
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Figure 2: Superior performance of the BLAST FPS algorithm. Fig-
ure (a) plots ROCjq score, and Figure (b) plots normalized equivalence number,
both as a function of query set size. For each of the 73 Prosite families, nested
query sets were randomly selected after binary weighting was carried out. The
figure includes 73 query sets of size 2, 57 sets of size 4, 35 of size 8, 16 of size
16 and 3 sets of size 32. Error bars represent standard error.



Family BLAST FPS HMMER MAST Total

ROCs0 Rank ROCsp Rank ROCsp Rank rank
PS00190 0.585 2 0.016 3 0.530 3 8
PS00339 0.543 1 0.305 8 0.433 1 10
PS00211 0.659 3 0.277 6 0.781 6 15
PS00402 0.770 5 0.383 11 0.503 2 18
PS00092 0.891 11 0.053 4 0.732 4 19
PS00120 0.696 4 0.393 12 0.824 9 25
PS00038 0.842 7 0.335 9 0.906 15 31
PS00061 0.863 8 0.439 13 0.863 10 31
PS00198 0.824 6 0.824 17 0.892 13 36
PS00301 0.885 10 0.733 15 0.868 11 36
PS00030 0.927 14 0.278 7 0.927 18 39
PS00343 0.873 9 0.871 21 0.884 12 42
PS00338 0.936 15 0.725 14 0.936 19 48
PS00659 0.917 13 0.190 5 0.992 33 51
PS00716 0.894 12 0.923 25 0.894 14 51

Table 1: Difficult families. Listed are the fifteen families that contain eight
or more weighted sequences and that received the lowest ROCsg scores for 8-
sequence queries. For each method, the families are ranked by increasing ROCjsq
score. They are listed in order of increasing total rank.

to a relatively large and hence difficult-to-recognize protein family. The effect
of family size upon recognition difficulty is clearly illustrated by the downward
trend of the single-sequence BLAST series in Figure 2. Since each point in this
series represents data collected from single-sequence BLAST searches, the only
difference between successive points in the series is the families over which the
scores are averaged.

Figure 3 corrects for differences in family size by including only families con-
taining between 16 and 31 members. Here, the trend toward better performance
with more query sequences is clearer. As before, the overall difference between
methods are significant at the 1% confidence level.

Some protein families are difficult to recognize regardless of the homology
detection method employed. Table 1 shows the fifteen families that received the
lowest ROCj5g scores from all three methods. The data show a strong correla-
tion between the families for which the three homology detection methods have
difficulty: included in the fifteen most difficult families are all fifteen of the most
difficult families for BLAST FPS, and twelve of the most difficult fifteen families
for MAST and HMMER. This agreement indicates that, for these families, a
low ROCj50 score indicates a family that is difficult to recognize, rather than a
problem with the homology detection method.

Any evaluation of homology detection methods can only be as accurate as the
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Figure 3: Improved performance of homology detection algorithms
with larger query sets. Figure (a) plots ROCsg score as a function of query
set size; Figure (b) plots normalized equivalence number as a function of query
set size. Each figure includes data from the 13 families containing more than
fifteen and less than 32 members after binary sequence weighting. Error bars
represent, standard error.
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Figure 4: Relative performance of variants of the BLAST FPS algo-
rithm. The figure plots ROCsg score as a function of query set size for all 73
families.

curated list of family members upon which the evaluations are based. Unanno-
tated family members will cause all three methods to apparently perform poorly
on that family. Thus, for example, the first 50 false positives that BLAST uncov-
ered for the cytochrome c family contain six sequences for which the annotation
includes the words CYTOCHROME C. Three of these false positive sequences are
cytochrome C precursors; three more are listed as cytochrome ¢ family members
in a later version of SWISS-PROT (one as a potential member).

Numerous variants of the FPS algorithm are possible. Figure 4 compares
four such variants: scoring sequences using using BLAST E-values or bit scores,
and combining these scores by taking the best score or the average score. The
results show that using the best score, rather than the average score, provides
better homology detection performance. Either the best bit score or the best E-
value performs approximately as well, although a paired ¢ test comparing ROCjsq
scores from all 183 training sets indicates that the bit score gives slightly better
performance, with 1% confidence. Not surprisingly, computing the average E-
value score does not lead to good performance.

An important difference between BLAST and MAST on the one hand and
HMMER on the other is that the former two algorithms employ local search
techniques. The hmmsw program, in contrast, performs a semi-local search,
in which a single subsequence of the HMM can match a subsequence of the
database protein sequence. The three-row topology of the standard linear HMM
implies a simple model of evolution, involving point mutations, insertions and
deletions. Semi-local searching adds to this model the possibility of large-scale

11



BLAST FPS

09

ROC50
o
~
T

0.5 No repeats —— q
Repeats &

0.4 . . . . . . . .
2 4 6 8 10 12 14 16
Query set size

09 9
0.8

0.7 |

ROC50

0.6 -

0.5 No repeats —-— -
Repeats -&--

0.4 . . . . . . . .
2 4 6 8 10 12 14 16
Query set size

09 F i
08 i
07 /\ i
06 L. E

05 - % % No repeats —— ‘% B

Repeats &

ROC50

0.4 . . . . . . . .
2 4 6 8 10 12 14 16
Query set size

()

Figure 5: Relative performance of homology detection algorithms on
families with and without repeated elements. Each figure plots the av-
erage ROCs5g score of one homology detection algorithm as a function of query
set size for families with and without repeated elements. The figures contain
data for 21 families containing repeats and 52 families without repeats. Error
bars represent standard error.
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Program Query set size

2 4 8
BLAST FPS 18.2 39.4 82.3
MEME 67.2 170.4  548.0
MAST 65.5 39.7 33.9
hmmt 41.6 62.6 1716.7
hmmsw 8965.2 8772.3 8692.0

Table 2: Typical execution times for the three homology detection
methods. Times reported are total CPU time in seconds on a 167 MHz Sparc
Ultra for one protein family.

deletions and insertions at either end of the protein. Still, however, the linear
topology cannot accurately model protein families in which motifs or domains
are repeated or shuffled. Accordingly, one would expect HMMER to perform
poorly on families known to contain repeated elements. Figure 5 illustrates this
effect. Prosite annotations are used to separate out those families containing
repeated elements. For all query set sizes, HMMER, performs significantly worse
on families containing repeated domains. For MAST, although some differences
between ROC5y scores for families with and without repeats are significant,
those differences are smaller, and no consistent trend appears. Surprisingly,
however, BLAST performs better on families without repeated domains. This
is unexpected because the gapped BLAST algorithm allows a single subsequence
to participate in more than one maximal segment pair and therefore should be
able to cope with repeated elements.

One important reason for using homology detection to infer protein func-
tion is speed. Most wet lab experiments are slow relative to a protein database
search. However, not all computational methods are equally fast. In this re-
spect, BLAST FPS clearly outperforms both MEME/MAST and HMMER. For
example, Table 2 shows typical timing data for one protein family. For an
8-member query set, BLAST FPS requires only 82 seconds; combined, MEME
and MAST require 9.7 minutes, and HMMER training and searching require 2.9
hours. BLAST implements a linear algorithm, whereas the training algorithms
for both MEME and HMMER are roughly O(n?) in the size of the training set.
On the other hand, the MAST search algorithm is considerably faster than the
corresponding HMMER search algorithm, hmmsw. A MAST query requires less
than a minute, but with hmmsw, searching even a relatively small database like
SWISS-PROT takes nearly 2.5 hours on a fast workstation.
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5 Discussion

For family-based homology detection using query sets of the sizes investigated
here, the Family Pairwise Search algorithm is clearly preferable to the more com-
putationally expensive statistical modeling methods tested here. The reasons
for FPS’s excellent performance are four-fold.

First, the FPS score incorporates information from multiple sequence com-
parisons into a single score. The method thereby allows for the detection of
remote homologs that lack significant similarity with one or more of the training
set sequences. FPS is therefore similar to the intermediate sequence approach
suggested by Pearson [36] and Park et al. [32].

Also, FPS may perform well relative to motif-based methods because BLAST
allows for query-to-target matches along the entire length of the sequences,
rather than only within the motif regions. These non-motif regions often contain
important evidence of homology [36].

On the other hand, FPS avoids building models of the relatively noisy, inter-
motif regions in the query set. The difficulty of properly aligning these regions,
especially when the number of query sequences is small, most likely accounts
for the relatively poor performance of the hidden Markov model method.

Finally, by avoiding a position-specific scoring matrix representation of the
training sequences, FPS does not assume that the occurrences of amino acids
at a particular site in the protein are independent of amino acid occurrences at
other sites in the same protein. If, in fact, covariation between sites imposes a
significant evolutionary constraint, then searching separately with each training
set sequence will respect that constraint.

The results reported here appear to be in conflict with those of Tatusov et
al. [40]. They compare four homology detection techniques based upon position-
specific scoring matrices with a control method in which candidate sequences are
scored according to their maximum match with any sequence in a set of known
homologs. This control method is thus very similar to FPS. Tatusov et al.
report that all four matrix-based techniques provide superior homology detec-
tion performance relative to the control method. However, they build matrices
only of motif regions and compare their matrix-based techniques to sequence
searches that use only the same motif regions. The improvement reported here
of BLAST FPS over MAST is likely a result of the FPS algorithm’s ability to
exploit homology information from the non-motif regions of the sequence. Fur-
thermore, HMMER's relatively poor performance indicates that Tatusov et al.’s
results likely would not extend to complete sequence models.

For fairness of comparison, the experiments reported here employ the de-
fault settings of each technique. It may be the case, however, that selecting
different parameter settings for the various homology detection methods may
result in slightly different results. For example, although both MEME and HM-
MER employ Dirichlet mixture priors, MEME weights the prior more heavily
by default. This heuristic may have given MEME an advantage for the smaller
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training sets. Furthermore, advances in hidden Markov modeling, such as im-
proved scoring schemes [11], internal sequence weighting [24] and maximum
discrimination training [17], may significantly improve the performance of these
methods.

Currently, an important drawback to FPS is its lack of accompanying statis-
tics. Computing an E-value for the minimum of a set of E-values is difficult
without an adequate model of the query sequence dependencies. Empirical ap-
proximations of these statistics will be the subject of future research. Even in
the absence of accurate E-values, however, FPS should be useful as a baseline
for comparison with future homology detection algorithms.

The large difference in performance between single-sequence BLAST queries
on the one hand and family-based homology detection methods on the other
suggests a bootstrap approach when only a single query sequence is available. In
such an approach, BLAST would be used initially to search for close homologs,
which would then be given to a family-based homology detection algorithm.

Iterating this bootstrap procedure should provide even better homology in-
formation than the single pass reported here. Iterative applications of BLAST
have been suggested [25, 40] and implemented in PSI-BLAST [3]. However,
PSI-BLAST searches the database using position-specific scoring matrix repre-
sentations. In order to test the usefulness of this representation, it would be
interesting to compare the performance of PSI-BLAST with that of an iterative
search that employs Family Pairwise Search.
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A Prosite families

ID Family n ne R
PS00030 Eukaryotic putative RNA-binding region RNP-1 59 24 Y
PS00037 Myb DNA-binding domain 1 18 4 Y
PS00038 Myc-type, ‘helix-loop-helix’ dimerization domain 90 26 N
PS00043 Bacterial regulatory proteins, gntR 10 8 N
PS00060 Iron-containing alcohol dehydrogenases 2 7 3 N
PS00061  Short-chain alcohol dehydrogenase 82 24 Y
PS00070  Aldehyde dehydrogenases cysteine active site 34 8 N
PS00075 Dihydrofolate reductase 33 14 N
PS00077 Cytochrome c oxidase subunit I,

copper B binding region 53 2 N
PS00079  Multicopper oxidases 1 12 7 Y
PS00092 N-6 Adenine-specific DNA methylases 35 28 Y
PS00095 C-5 cytosine-specific DNA methylases C-terminal 33 16 N
PS00099 Thiolases active site 14 3 N
PS00118 Phospholipase A2 histidine active site 110 9 N
PS00120 Lipases, serine active site 36 14 N
PS00133  Zinc carboxypeptidases, zinc-binding region 2 19 5 N
PS00141 Eukaryotic and viral aspartyl proteases active site 50 13 Y
PS00144  Asparaginase / glutaminase active site 1 8 3 N
PS00180 Glutamine synthetase 1 55 7 N
PS00185  Isopenicillin N synthetase 1 10 2 N
PS00188 Biotin-requiring enzymes attachment site 15 8 N
PS00190 Cytochrome c family heme-binding site 223 73 Y
PS00194  Thioredoxin family active site 48 15 Y
PS00198  4Fe-4S ferredoxins, iron-sulfur binding region 109 53 Y
PS00209  Arthropod hemocyanins / insect LSPs 1 14 4 N
PS00211  ABC transporters 119 38 Y
PS00215 Mitochondrial energy transfer proteins 39 12 Y
PS00217  Sugar transport proteins 2 46 14 N
PS00225 Crystallins beta and gamma ‘Greek key’ motif 47 6 Y
PS00281 Bowman-Birk serine protease inhibitors 22 9 Y
PS00283  Soybean trypsin inhibitor (Kunitz)

protease inhibitors 30 13 N
PS00287 Cysteine proteases inhibitors 32 1 Y
PS00301  GTP-binding elongation factors 110 8 N
PS00338 Somatotropin, prolactin and related hormones 2 86 12 N
PS00339 Aminoacyl-transfer RNA synthetases class-II 2 38 19 N
PS00340 Growth factor and cytokines receptors 2 37 16 N
PS00343 Gram-positive cocci surface proteins

‘anchoring’ hexapeptide 25 16 N
PS00372 PTS EITA domains phosphorylation site 2 7 4 N
PS00399 ATP-citrate lyase and succinyl-CoA

ligases active site 4 2 N
PS00401 Prokaryotic sulfate-binding proteins 1 5 2 N
PS00402 Binding-protein-dependent transport systems

inner membrane component sign 39 19 N
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ID Family n  ny R
PS00422  Granins 1 12 3 N
PS00435 Peroxidases proximal heme-ligand 41 8 N
PS00436 Peroxidases active site 40 8 N
PS00490 Prokaryotic molybdopterin oxidoreductases 2 9 6 N
PS00548 Ribosomal protein S3 1 18 3 N
PS00589 PTS HPR component serine phosphorylation site 10 5 Y
PS00599 Aminotransferases class-1I

pyridoxal-phosphate attachment site 21 8 N
PS00606 Beta-ketoacyl synthases active site 17 4 Y
PS00624 GMC oxidoreductases 2 9 5 N
PS00626 Regulator of chromosome condensation (RCC1) 2 6 2 Y
PS00637 CXXCXGXG dnaJ domain 9 5 N
PS00639 Eukaryotic thiol (cysteine) proteases

histidine active site 62 19 N
PS00640 Eukaryotic thiol (cysteine) proteases

asparagine active site 62 19 N
PS00643 Respiratory-chain NADH dehydrogenase

75 Kd subunit 3 5 2 N
PS00656  Glycosyl hydrolases family 6 2 5 4 N
PS00659  Glycosyl hydrolases family 5 40 19 N
PS00675  Sigma-54 interaction domain ATP-binding region A 36 6 N
PS00676  Sigma-54 interaction domain ATP-binding region B 36 6 N
PS00678 Beta-transducin family Trp-Asp repeats 26 17 Y
PS00687  Aldehyde dehydrogenases glutamic acid active site 33 7 N
PS00697 ATP-dependent DNA ligase AMP-binding site 11 6 N
PS00700 Ribosomal protein L6 2 13 4 N
PS00716  Sigma-70 factors 2 36 8 N
PS00741  Guanine-nucleotide dissociation stimulators CDC24 6 5 N
PS00760  Signal peptidases I lysine active site 8 5 N
PS00761  Signal peptidases I 3 8 5 N
PS00831 Ribosomal protein L27 6 3 N
PS00850  Glycine radical 4 3 N
PS00867 Carbamoyl-phosphate synthase subdomain 2 20 3 Y
PS00881  Protein splicing 3 3 Y
PS00904 Protein prenyltransferases alpha subunit 4 3 Y
PS00933 FGGY family of carbohydrate kinases 1 11 5 N

Prosite IDs of the 73 families included in this study. n is the total number
of sequences in the family, and n, is the number of sequences remaining after binary
sequence weighting. The final column (R) indicates whether the family contains re-
peated elements. Two families from the original set of 75 [6] were discarded because

they contained a single sequence after binary sequence weighting.
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