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Abstract

The function of an unknown biological sequence can of-
ten be accurately inferred by identifying sequences ho-
mologous to the original sequence. Given a query set
of known homologs, there exist at least three general
classes of techniques for �nding additional homologs:
pairwise sequence comparisons, motif analysis, and hid-
den Markov modeling. Pairwise sequence comparisons
are typically employed when only a single query se-
quence is known. Hidden Markov models (HMMs), on
the other hand, are usually trained with sets of more
than 100 sequences. Motif-based methods fall in be-
tween these two extremes.

The current work compares the performance of rep-
resentative examples of these three homology detection
techniques|using the BLAST, MEME and HMMER
software|across a wide range of protein families, us-
ing query sets of varying sizes. A linear combination
of multiple pairwise sequence comparisons outperforms
motif-based and HMM methods for all query set sizes.
Furthermore, heuristic pairwise comparison algorithms
are much more e�cient than the training algorithms for
statistical models.

1 Introduction

The Human Genome Project and similar work on other
species are producing biological sequence data at an ac-
celerating rate. However, this data represents only a
�rst step toward the goal of understanding the func-
tions of these genetic sequences. Computational meth-
ods, although they will probably never replace the wet
lab techniques of molecular biology, provide an impor-
tant set of tools for inferring function.

One of the most e�ective means of inferring the func-
tion of an unidenti�ed protein is to ask what functions
are performed by homologous proteins. Two proteins
are homologous if they share a common ancestor. Since
the actual sequence of the common ancestor is unavail-
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able, sequence homology can only be inferred by statis-
tical means.

The most widely used means of inferring homol-
ogy involves performing a pairwise comparisons between
a single query sequence and a sequence in a protein
database. Dynamic programming algorithms, such as
the Smith-Waterman algorithm, or related heuristic al-
gorithms, such as BLAST [2, 3] and FASTA [30], can be
used to assign to each sequence in a database a score in-
dicating the likelihood that this sequence is homologous
to the query sequence.

Because homology inferences are based upon sta-
tistical measures, they become increasingly uncertain
when the evidence for homology is weak. The twilight
zone of sequence similarity sets the boundary of con-
�dence levels for detecting evolutionary relatedness of
proteins [15]. For most pairwise alignment programs,
the twilight zone falls between 20-25% sequence iden-
tity [14].

In order to push back the twilight zone and thereby
discover more remote homologs, additional information
is needed. Family-based methods of homology detec-
tion leverage the information contained in a set of pro-
teins that are known to be homologous. In a diverse
family of proteins, individual members may have very
low pairwise sequence similarity and hence might be
missed by a pairwise analysis. Using a representative
set of sequences from the family, however, can uncover
these missed relationships because homology is transi-
tive [31, 3].

The simplest means of detecting homologs using a
set of related query proteins is to perform multiple pair-
wise comparisons. Each sequence in the database is
compared with each sequence in the query set and the
resulting scores are combined into an overall score for
that sequence. This approach may be augmented by
adding the newly discovered homologs to the query set
and iterating until a transitive closure of the homology
relationship is computed [27].

More sophisticated homology detection methods in-
volve two steps: �rst building a statistical model of the
family and then comparing that model to each sequence
in the database. For example, hidden Markov models
(HMMs) have been used extensively to model protein
families [24, 11, 16]. These statistical models have a
strong theoretical basis in probability and are supported
by e�cient algorithms for training, database searching,
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and multiple sequence alignment. The model parame-
ters are learned via expectation-maximization, and the
homology detection algorithm is a form of dynamic pro-
gramming. One drawback to modeling proteins using
HMMs is that they contain many free parameters and
therefore require a large amount of training data. A
typical, 200-state HMM may contain on the order of
5000 trainable parameters. The use of empirically de-
rived Dirichlet mixture priors [13] can partially o�set
the need for larger training sets.

The size of the model may be greatly reduced by
focusing only upon regions that are highly conserved
across family members. Usually these regions, called
motifs, have been conserved by evolution for important
structural or functional reasons. As such, the motifs
constitute a summary of the essential details of the fam-
ily of proteins. Motifs may be represented as regular
expressions [9, 28], or more generally as pro�les [17]
or position-speci�c scoring matrices, in which each col-
umn in the matrix represents a distribution across the
amino acids at that position in the motif. These matrix
models are formally equivalent to a class of HMMs and
hence may be learned via expectation-maximization [5]
or Gibbs sampling [25] from a set of unaligned pro-
tein sequences. Because motif-based methods ignore the
poorly conserved spacer regions between motifs, they
can be trained using smaller sets of related sequences.

This work compares the performance of each of these
three homology detection methods and examines the ex-
tent to which each is dependent upon the size of the
query set. For all query set sizes investigated here, the
average score of multiple pairwise sequence comparisons
performs better than both competing methods. All
three methods have di�culty recognizing larger protein
families. Also, larger query sets uniformly lead to im-
proved homology detection. Pairwise comparisons and
hidden Markov models have di�culty recognizing fam-
ilies containing repeated elements. Overall, heuristic
pairwise comparison algorithms provide excellent per-
formance and are much more computationally e�cient
than competing, model-based methods of homology de-
tection.

2 Methods

Protein families

A collection of 75 protein families [7] was used in the
homology detection experiments. These families were
selected from the Prosite database [9] for their di�culty,
based upon the number of false positives reported in the
Prosite annotations. The Prosite IDs of these families
are listed in Appendix A. The families range in size
from 5 to 109 sequences, and from 949 to 58 015 amino
acids. The associated release of SwissProt [10] contains
36 000 sequences and nearly 12.5 million amino acids.

Attempts to model families of related proteins are
necessarily biased because the set of known protein se-
quences does not uniformly sample from the space of
existing family members. Sequence weighting schemes
attempt to compensate for this bias by assigning weights
to individual sequences, usually based upon the level
of sequence similarity. Such schemes may signi�cantly
improve the performance of homology detection algo-
rithms [1, 33, 34]; however, Heniko� and Heniko� [21]

procedure average score (query set, database)
for i  1 to size(database)

target  database[i]
sum of scores = 0.0
for j  1 to size(query set)

query  query set[j]
(evalue, score)  BLAST(query, target)
if (evalue < 1000) then
sum of scores = sum of scores + score

end
end
scores[i] = sum of scores / size(query set)

end
return scores

Figure 1: The algorithm used to compute average
BLAST scores.

have shown that many weighting schemes perform al-
most as well as one another. Accordingly, all the exper-
iments reported here employ a simple, binary weight-
ing scheme based upon BLAST similarity scores [26].
This approach is simple, since the highly similar se-
quences can be removed at once before any analysis is
performed, and leads to faster training, since the sizes of
the weighted training sets are reduced. For these exper-
iments, a BLAST similarity threshold of 200 was used.
The sizes of the weighted Prosite families ranged from 1
to 73 sequences with an average of 10.7 sequences, and
from 394 to 18 702 amino acids with an average of 4202.

For each family, nested query sets of sizes 2, 4, 8, 16
and 32 sequences were randomly selected from the set
of weighted sequences. This resulted in 73 query sets of
size 2, 57 sets of size 4, 35 of size 8, 16 of size 16 and 3
query sets of size 32.

Pairwise sequence comparison

For homology detection using pairwise comparisons,
gapped BLAST version 2.0 was used [2]. BLAST is
a heuristic approximation of a dynamic programming
optimization of maximal segment pair scores. The pro-
gram was run with its default parameters, including the
�ltering of low-complexity regions and the use of the
BLOSUM62 scoring matrix. Although BLAST was de-
signed for single-sentence queries, it was extended here
to multiple-sequence queries by searching the database
separately with each member of the query set. For each
search, an expectation cuto� of 1000 was used, and
database sequences which would have received E-values
larger than 1000 were assigned bit scores of 0.0. The
result, from a set of n training sequences, was a set of n
normalized BLAST bit scores for each sequence in the
database. The n scores were then averaged to yield a
�nal score for that database sequence. This algorithm
is summarized in Figure 1.

Motif analysis

Ungapped motifs were discovered using MEME version
2.1 [5] with the default parameter settings from the web
interface [19]. These defaults include empirical Dirich-
let mixture priors weighted according to the megaprior

2



heuristic [6], a minimum motif width of 12 and a maxi-
mum of 55, and a motif model biased toward zero or one
motif occurrence per sequence. A total of ten motifs was
discovered from each query set, and motif signi�cance
was judged using the majority occurrence heuristic [20]:
motifs that did not appear in more than half of the query
sequences were discarded. This heuristic excludes mo-
tifs that are speci�c to subfamilies of the given query
set. For eight-sequence queries, the heuristic selected
an average of 5.2 motifs.

Homology detection was performed using MAST [8].
For each sequence in the database, MAST computes a
p-value for each given motif and combines these values
assuming that motif occurrences are statistically inde-
pendent. The resulting sequence-level E-value scores
were used to rank the sequences in the database.

Hidden Markov model analysis

Hidden Markov models of each query set were built
using the HMMER software package version 1.8 [16].
Models were trained using expectation-maximization
coupled with simulated annealing. The default geomet-
ric annealing schedule was used, and Dirichlet mixture
priors were used in order to allow the models to be
trained with smaller training sets.

Preliminary experiments showed that, of the four
search programs provided in HMMER, hmmsw consis-
tently provides the best results when searching protein
databases. That program uses a modi�ed form of the
Smith-Waterman algorithm to search for sequence-to-
model matches, allowing partial matches to either the
sequence or the model. Thus, hmmsw performs a semi-
local search. For each database sequence, the program
returns a log-odds scores in bits.

Evaluating search results

Amodi�ed version of the Receiver Operating Character-
istic, called ROC50 [18], was used to compare the three
search techniques. The ROC score is the area under a
curve which plots true positives versus true negatives
for varying score thresholds. ROC analysis combines
measures of a search's sensitivity and selectivity. The
ROC50 score is the area under the ROC curve, up to the
�rst 50 false positives. This value has the advantages of
yielding a wider spread of values, of requiring less stor-
age space, and of corresponding to the typical biologist's
willingness to sift through only approximately �fty false
positives. ROC50 scores are normalized to range from
0.0 to 1.0, with 1.0 corresponding to the most sensi-
tive and selective search. For BLAST, sequences were
ranked according to the average bit score, as described
above. For MAST, sequences were ranked by E-value,
and for HMMER, sequences were ranked by log-odds
score.

3 Results

Figure 2(a) shows the average ROC50 scores for all 75
protein families in the study. In comparing distribu-
tions of ROC50 scores, a two-sample t test was used, and
di�erences were deemed signi�cant at a 1% con�dence
level. In Figure 2(a), for query sets of size 2, 4, 8 and
16, all di�erences between search techniques at a given

query set size are signi�cant. Thus, BLAST uniformly
outperforms the other two methods, and MEME out-
performs HMMER. Only three families contained more
than 32 weighted members, so the di�erences between
techniques at that query set size are not signi�cant.

One unexpected characteristic of Figure 2(a) is the
downward trend of the BLAST and MEME scores as the
query set size increases. However, this trend is an arti-
fact of the presentation of the data: the 73 2-sequence
queries contain many sequences from very small fami-
lies. For these small families, the task of homology de-
tection is relatively easy. The sixteen 16-sequence query
sets, however, each correspond to a relatively large and
hence di�cult-to-recognize protein family. The e�ect
of family size upon recognition di�culty is illustrated
in Figure 3, in which ROC50 scores are plotted as a
function of family size. The scores show a signi�cant
downward trend as the family size increases.

Figure 2(b) corrects for di�erences in family size by
including only families containing between 16 and 31
members. Here, the trend toward better performance
with more query sequences is clearer. All three methods
improve signi�cantly (again with a 1% con�dence level)
at each increase in the query set size except for HMMER
between queries of size 2 and 4.

Some protein families are di�cult to recognize re-
gardless of the homology detection method employed.
Table 1 shows the �fteen families that received the low-
est ROC50 scores from all three methods. The data
show a strong correlation between the families for which
BLAST and MEME had di�culty: the seven most di�-
cult families for each method are the same. This agree-
ment indicates that, for these families, a low ROC50

score indicates a family that is di�cult to recognize,
rather than a problem with the homology detection
method.

Any evaluation of homology detection methods can
only be as accurate as the curated list of family members
upon which the evaluations are based. Unannotated
family members will cause all three methods to appar-
ently perform poorly on that family. Thus, for example,
the �rst 50 false positives that BLAST uncovered for the
cytochrome c family contain six sequences for which the
annotation includes the words CYTOCHROME C. Three of
these false positive sequences are cytochrome C precur-
sors; three more are listed as cytochrome c family mem-
bers in a later version of SwissProt (one as a potential
member).

An important di�erence between BLAST and
MEME on the one hand and HMMER on the other
is that the former two algorithms employ local search
techniques. The hmmsw program, in contrast, performs
a semi-local search, in which a single subsequence of the
HMM can match a subsequence of the database protein
sequence. The three-row topology of the standard lin-
ear HMM implies a simple model of evolution, involving
point mutations, insertions and deletions. Semi-local
searching adds to this model the possibility of large-
scale deletions and insertions at either end of the pro-
tein. Still, however, the linear topology cannot accu-
rately model protein families in which motifs or domains
are repeated or shu�ed. Accordingly, one would expect
HMMER to perform poorly on families known to con-
tain repeated elements. Figure 4 illustrates this e�ect.
Prosite annotations were used to separate out those
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Figure 2: ROC50 score as a function of query set size. For each of the 75 Prosite families, nested query sets
were randomly selected after binary weighting was carried out. Figure (a) includes data for all families in the study;
Figure (b) only includes data from families containing more than �fteen and less than 32 members after binary
sequence weighting. Error bars represent standard error. Figure (a) includes 73 query sets of size 2, 57 sets of size 4,
35 of size 8, 16 of size 16 and 3 sets of size 32; Figure (b) includes 13 query sets of each size.
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Figure 3: ROC50 score as a function of family size. Each �gure includes ROC50 scores from 35 8-sequence
queries. The slope of the regression line in Figure (a) is -0.0053 and in Figure (b) is -0.0045. Both slopes are
signi�cantly di�erent from 0.0 at a 1% level of con�dence. In each �gure, two outlying families (with 53 and 73
sequences) are left out for the sake of scale.
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Figure 4: ROC50 score as a function of query set size for families with and without repeated elements.
Each �gure contains data for 21 families containing repeats and 52 families without repeats. Error bars represent
standard error.
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Family BLAST HMMER MEME Total
ROC50 Rank ROC50 Rank ROC50 Rank rank

Cytochrome c 0.562 1 0.043 2 0.548 1 4
ABC transporters 0.774 4 0.292 4 0.784 6 14
N-6 Adenine-speci�c DNA methylases 0.814 7 0.257 3 0.747 5 15
Aminoacyl-transfer RNA synthetases class-II 0.632 2 0.455 11 0.654 2 15
Binding-protein-dependent transport 0.802 6 0.431 9 0.710 3 18

systems inner membrane component
Lipases 0.771 3 0.528 13 0.814 7 23
Gram-positive cocci surface proteins 0.779 5 0.764 16 0.718 4 25
Eukaryotic putative RNA-binding region RNP-1 0.903 11 0.389 8 0.887 13 32
Myc-type, helix-loop-helix dimerization domain 0.864 8 0.375 7 0.912 17 32
Short-chain alcohol dehydrogenases 0.895 9 0.512 12 0.869 11 32
GTP-binding elongation factors 0.938 14 0.752 15 0.873 12 41
Glycosyl hydrolases 0.941 15 0.360 6 0.943 22 43
4Fe-4S ferredoxins 0.897 10 0.837 18 0.918 18 46
Growth factor and cytokines receptors 0.954 18 0.444 10 0.925 19 47
C-5 cytosine-speci�c DNA methylases 0.934 13 0.844 19 0.936 20 52

Table 1: Di�cult families. Listed are the �fteen families that contain eight or more weighted sequences and that
received the lowest ROC50 scores for 8-sequence queries. For each method, the families were ranked by increasing
ROC50 score. They are listed in order of increasing total rank.

Program Query set size
2 4 8

BLAST 18.2 39.4 82.3
MEME 67.2 170.4 548.0
MAST 65.5 39.7 33.9
hmmt 41.6 62.6 1716.7
hmmsw 8965.2 8772.3 8692.0

Table 2: Typical execution times for the three
homology detection methods. Times reported are
total CPU time in seconds on a 167 MHz Sparc Ultra
for one protein family.

families containing repeated elements. For all query set
sizes, HMMER performs signi�cantly worse (with 1%
con�dence) on families containing repeated domains.
For MEME, although some di�erences between ROC50

scores for families with and without repeats are signif-
icant, those di�erences are smaller, and no consistent
trend appears. Surprisingly, however, BLAST performs
better on families without repeated domains. This dif-
ference most likely arises because, in the gapped BLAST
algorithm, a given sequence segment cannot participate
in more than one MSP score.

One important reason for using homology detection
to infer protein function is speed. Most wet lab exper-
iments are slow relative to a protein database search.
However, not all computational methods are equally
fast. In this respect, BLAST clearly outperforms both
MEME and HMMER. For example, Table 2 shows typi-
cal timing data for one protein family. For an 8-member
query set, BLAST requires only 82 seconds; combined,
MEME and MAST require 9.7 minutes, and HMMER
training and searching require 2.9 hours. BLAST im-
plements a linear algorithm, whereas the training al-
gorithms for both MEME and HMMER are roughly
O(n2) in the size of the training set. On the other hand,
the MAST search algorithm is considerably faster than

the corresponding HMMER search algorithm, hmmsw.
A MAST query requires less than a minute, but with
hmmsw, searching even a relatively small database like
SwissProt takes nearly 2.5 hours on a fast workstation.

4 Discussion

For family-based homology detection using query sets
of the sizes investigated here, computing the average
score from a pairwise sequence comparison algorithm
such as BLAST is clearly preferable to the more compu-
tationally expensive statistical modeling methods tested
here. The reasons for BLAST's excellent performance
are three-fold.

First, the average BLAST score incorporates infor-
mation from multiple sequence comparisons into a sin-
gle score. The method thereby allows for the detection
of remote homologs that lack signi�cant similarity with
one or more of the training set sequences. The average
BLAST score is therefore similar to the intermediate se-
quence approach suggested by Pearson [32] and Park et
al. [29].

Also, BLAST may perform well relative to motif-
based methods because BLAST allows for query-to-
target matches along the entire length of the sequences,
rather than only within the motif regions. These non-
motif regions often contain important evidence of ho-
mology [32].

Finally, by avoiding a position-speci�c scoring ma-
trix representation of the training sequences, the av-
erage BLAST score method does not assume that the
occurrences of amino acids at a particular site in the pro-
tein are independent of amino acid occurrences at other
sites in the same protein. If, in fact, covariation between
sites imposes a signi�cant evolutionary constraint, then
searching separately with each training set sequence will
respect that constraint.

For fairness of comparison, the experiments reported
here employed the default settings of each technique.
It may be the case, however, that selecting di�erent
parameter settings for the various homology detection
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methods may result in slightly di�erent results. For
example, although both MEME and HMMER employ
Dirichlet mixture priors, MEME weights the prior more
heavily by default. This heuristic may have given
MEME an advantage for the smaller training sets.

The large di�erence in performance between single-
sequence BLAST queries on the one hand and family-
based homology detection methods on the other sug-
gests a bootstrap approach when only a single query
sequence is available. In such an approach, BLAST
would be used initially to search for close homologs,
which would then be given to a family-based homology
detection algorithm.

Iterating this bootstrap procedure should provide
even better homology information than the single pass
reported here. Iterative applications of BLAST have
been suggested by Koonin and Tatusov [23] and im-
plemented in Probe [27] and PSI-BLAST [3]. How-
ever, Probe and PSI-BLAST search the database us-
ing position-speci�c scoring matrix representations. In
order to test the usefulness of these matrix represen-
tations, it would be interesting to compare the perfor-
mance of PSI-BLAST with that of an iterative search
that employs the average BLAST score. Such a com-
parison will be the subject of future research.
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A Prosite families

PS00030 PS00037 PS00038 PS00043 PS00060
PS00061 PS00070 PS00075 PS00077 PS00079
PS00092 PS00095 PS00099 PS00118 PS00120
PS00133 PS00141 PS00144 PS00158 PS00180
PS00185 PS00188 PS00190 PS00194 PS00198
PS00209 PS00211 PS00215 PS00217 PS00225
PS00281 PS00283 PS00287 PS00301 PS00338
PS00339 PS00340 PS00343 PS00372 PS00399
PS00401 PS00402 PS00422 PS00435 PS00436
PS00490 PS00548 PS00589 PS00599 PS00606
PS00624 PS00626 PS00637 PS00639 PS00640
PS00643 PS00656 PS00659 PS00675 PS00676
PS00678 PS00687 PS00697 PS00700 PS00716
PS00741 PS00760 PS00761 PS00831 PS00850
PS00867 PS00869 PS00881 PS00904 PS00933

Prosite IDs of the 75 families included in this study.
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