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Abstract

We introduce a method of functionally classifying
genes by using gene expression data from DNA mi-
croarray hybridization experiments. The method
is based on the theory of support vector machines
(SVMs). SVMs are considered a supervised computer
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learning method because they exploit prior knowl-
edge of gene function to identify unknown genes of
similar function from expression data. SVMs avoid
several problems associated with unsupervised clus-
tering methods, such as hierarchical clustering and
self-organizing maps. SVMs have many mathemati-
cal features that make them attractive for gene ex-
pression analysis, including their exibility in choos-
ing a similarity function, sparseness of solution when
dealing with large data sets, the ability to handle
large feature spaces, and the ability to identify out-
liers. We test several SVMs that use di�erent similar-
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ity metrics, as well as some other supervised learning
methods, and �nd that the SVMs best identify sets of
genes with a common function using expression data.
Finally, we use SVMs to predict functional roles for
uncharacterized yeast ORFs based on their expres-
sion data.

Introduction

DNA microarray technology provides biologists
with the ability to measure the expression levels of
thousands of genes in a single experiment. Initial
experiments [1] suggest that genes of similar func-
tion yield similar expression patterns in microarray
hybridization experiments. As data from such ex-
periments accumulates, it will be essential to have
accurate means for extracting biological signi�cance
and using the data to assign functions to genes.

Currently, most approaches to the computational
analysis of gene expression data attempt to learn
functionally signi�cant classi�cations of genes in an
unsupervised fashion. A learning method is consid-
ered unsupervised if it learns in the absence of a
teacher signal. Unsupervised gene expression anal-
ysis methods begin with a de�nition of similarity (or
a measure of distance) between expression patterns,
but with no prior knowledge of the true functional
classes of the genes. Genes are then grouped by using
a clustering algorithm such as hierarchical clustering
[1, 2] or self-organizing maps [3].

Support vector machines (SVMs) [4, 5, 6] and other
supervised learning techniques use a training set to
specify in advance which data should cluster together.
As applied to gene expression data, an SVM would
begin with a set of genes that have a common func-
tion: for example, genes coding for ribosomal proteins
or genes coding for components of the proteasome.
In addition, a separate set of genes that are known
not to be members of the functional class is speci�ed.
These two sets of genes are combined to form a set
of training examples in which the genes are labeled
positively if they are in the functional class and are
labeled negatively if they are known not to be in the
functional class. A set of training examples can easily
be assembled from literature and database sources.
Using this training set, an SVM would learn to dis-
criminate between the members and non-members of
a given functional class based on expression data.
Having learned the expression features of the class,
the SVM could recognize new genes as members or
as non-members of the class based on their expres-
sion data. The SVM could also be reapplied to the
training examples to identify outliers that may have
previously been assigned to the incorrect class in the

training set. Thus, an SVM would use the biolog-
ical information in the investigator's training set to
determine what expression features are characteristic
of a given functional group and use this information
to decide whether any given gene is likely to be a
member of the group.
SVMs o�er two primary advantages with respect

to previously proposed methods such as hierarchi-
cal clustering and self-organizing maps. First, al-
though all three methods employ distance (or sim-
ilarity) functions to compare gene expression mea-
surements, SVMs are capable of using a larger vari-
ety of such functions. Speci�cally, SVMs can employ
distance functions that operate in extremely high-
dimensional feature spaces, as described in more de-
tail below. This ability allows the SVMs implicitly
to take into account correlations between gene ex-
pression measurements. Second, supervised methods
like SVMs take advantage of prior knowledge (in the
form of training data labels) in making distinctions
between one type of gene and another. In an unsu-
pervised method, when related genes end up far apart
according to the distance function, the method has no
way to know that the genes are related.
We describe here the use of SVMs to classify genes

based on gene expression. We analyze expression
data from 2467 genes from the budding yeast Sac-

charomyces cerevisiae measured in 79 di�erent DNA
microarray hybridization experiments [1]. From these
data, we learn to recognize �ve functional classes
from the Munich Information Center for Protein Se-
quences Yeast Genome Database (MYGD) (http://
www.mips.biochem.mpg.de/proj/yeast). In addition
to SVM classi�cation, we subject these data to anal-
yses by four competing machine learning techniques,
including Fisher's linear discriminant [7], Parzen win-
dows [8], and two decision tree learners [9, 10]. The
SVM method out-performs all other methods inves-
tigated here. We then use SVMs developed for these
functional groups to predict functional associations
for 15 yeast ORFs of unknown function.

Methods and Approach

DNA microarray data. Each data point pro-
duced by a DNA microarray hybridization experi-
ment represents the ratio of expression levels of a
particular gene under two di�erent experimental con-
ditions [11, 12]. The result, from an experiment with
n genes on a single chip, is a series of n expression-
level ratios. Typically, the numerator of each ratio is
the expression level of the gene in the varying condi-
tion of interest, whereas the denominator is the ex-
pression level of the gene in some reference condition.
The data from a series of m such experiments may
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be represented as a gene expression matrix, in which
each of the n rows consists of anm-element expression
vector for a single gene. Following Eisen et al. [1], we
do not work directly with the ratio as discussed above
but rather with its normalized logarithm. We de�ne
Xi to be the logarithm of the ratio of expression level
Ei for gene X in experiment i to the expression level
Ri of gene X in the reference state, normalized so
that the expression vector ~X = (X1; : : : ; X79) has
Euclidean length 1:

Xi =
log(Ei=Ri)qP79
j=1 log

2(Ej=Rj)
: (1)

The expression measurementXi is positive if the gene
is induced (turned up) with respect to the reference
state and negative if it is repressed (turned down) [1].
Initial analyses described here are carried out using

a set of 79-element gene expression vectors for 2467
yeast genes [1]. These genes were selected by Eisen et

al. [1] based on the availability of accurate functional
annotations. The data were generated from spotted
arrays using samples collected at various time points
during the diauxic shift [12], the mitotic cell division
cycle [13], sporulation [14], and temperature and re-
ducing shocks, and are available on the Stanford web
site (http://rana.stanford.edu/clustering).
Predictions of ORFs of unknown function were

made by using a slightly di�erent set of data that did
not include temperature and reducing shocks data.
The data included 6221 genes, of which 2467 were
the annotated genes described above. The 80-element
gene expression vectors used for these experiments
included 65 of the 79 elements from the initial data
used, plus 15 additional mitotic cell division cycle
time points not used by Eisen et al. [1]. This data is
also available on the Stanford web site.
Support vector machines Each vector ~X in the

gene expression matrix may be thought of as a point
in an m-dimensional expression space. In theory, a
simple way to build a binary classi�er is to construct a
hyperplane separating class members (positive exam-
ples) from non-members (negative examples) in this
space. Unfortunately, most real-world problems in-
volve non-separable data for which there does not ex-
ist a hyperplane that successfully separates the pos-
itive from the negative examples. One solution to
the inseparability problem is to map the data into
a higher-dimensional space and de�ne a separating
hyperplane there. This higher-dimensional space is
called the feature space, as opposed to the input space
occupied by the training examples. With an appro-
priately chosen feature space of suÆcient dimension-
ality, any consistent training set can be made sepa-

rable. However, translating the training set into a
higher-dimensional space incurs both computational
and learning-theoretic costs. Furthermore, arti�cially
separating the data in this way exposes the learn-
ing system to the risk of �nding trivial solutions that
over�t the data.

SVMs elegantly sidestep both diÆculties [4]. They
avoid over�tting by choosing the maximum margin
separating hyperplane from among the many that can
separate the positive from negative examples in the
feature space. Also, the decision function for clas-
sifying points with respect to the hyperplane only
involves dot products between points in the feature
space. Because the algorithm that �nds a separating
hyperplane in the feature space can be stated entirely
in terms of vectors in the input space and dot prod-
ucts in the feature space, a support vector machine
can locate the hyperplane without ever representing
the space explicitly, simply by de�ning a function,
called a kernel function, that plays the role of the dot
product in the feature space. This technique avoids
the computational burden of explicitly representing
the feature vectors.

For some data sets, the SVM may not be able to
�nd a separating hyperplane in feature space, either
because the kernel function is inappropriate for the
training data or because the data contains mislabeled
examples. The latter problem can be addressed by
using a soft margin that allows some training ex-
amples to fall on the wrong side of the separating
hyperplane. Completely specifying a support vector
machine therefore requires specifying two parameters:
the kernel function and the magnitude of the penalty
for violating the soft margin. The settings of these
parameters depend on the speci�c data at hand.

Given an expression vector ~X for each gene X, the
simplest kernel K(X;Y ) that we can use to measure
the similarity between genes X and Y is the dot prod-
uct in the input space K(X;Y ) = ~X� ~Y =

P79
i=1XiYi.

For technical reasons (see http://www.cse.ucsc.edu/
research/compbio/genex), we add 1 to this kernel,

obtaining a kernel de�ned by K(X;Y ) = ~X � ~Y + 1.
When this dot product kernel is used, the feature
space is essentially the same as the 79-dimensional
input space, and the SVM will classify the examples
with a separating hyperplane in this space. Squaring
this kernel, i.e. de�ning K(X;Y ) = (~X � ~Y + 1)2,
yields a quadratic separating surface in the input
space. The corresponding separating hyperplane in
the feature space includes features for all pairwise
mRNA expression interactions XiXj, where 1 � i,
j � 79. Raising the kernel to higher powers yields
polynomial separating surfaces of higher degrees in
the input space. In general, the kernel of degree d
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is de�ned by K(X;Y ) = (~X � ~Y + 1)d. In the fea-
ture space of this kernel, for any gene X there are
features for all d-fold interactions between mRNA
measurements, represented by terms of the form
Xi1 Xi2 : : :Xid , where 1 � i1; : : : ; id � 79. We ex-
periment here with these kernels for degrees d = 1; 2
and 3.
We also experiment with a radial basis kernel [15],

which has a Gaussian form K(X;Y ) = exp(�jj~X �
~Yjj2=2�2), where � is the width of the Gaussian. In
our experiments, � is set equal to the median of the
Euclidean distances from each positive example to
the nearest negative example [16].
The gene functional classes examined here contain

very few members relative to the total number of
genes in the data set. This leads to an imbalance
in the number of positive and negative training ex-
amples that, in combination with noise in the data,
is likely to cause the SVM to make incorrect clas-
si�cations. When the magnitude of the noise in the
negative examples outweighs the total number of pos-
itive examples, the optimal hyperplane located by
the SVM will be uninformative, classifying all mem-
bers of the training set as negative examples. We
combat this problem by modifying the matrix of ker-
nel values computed during SVM optimization. Let
X(1); : : : ; X(n) be the genes in the training set, and
let K be the matrix de�ned by the kernel function
K on this training set; i. e., Kij = K(X(i); X(j)).
By adding to the diagonal of the kernel matrix a con-
stant whose magnitude depends on the class of the
training example, one can control the fraction of mis-
classi�ed points in the two classes. This technique
ensures that the positive points are not regarded as
noisy labels. For positive examples, the diagonal ele-

ment is modi�ed byKij :=Kij+�
n+

N
, where n+ is the

number of positive training examples, N is the total
number of training examples, and � is a scale factor.
A similar formula is used for the negative examples,
with n+ replaced by n�. In the experiments reported
here, the scale factor � is set to 0:1. A more math-
ematically detailed discussion of the techniques em-
ployed here is available at http://www.cse.ucsc.edu/
research/compbio/genex.
Experimental design Using the class de�nitions

made by the MIPS Yeast Genome Database, we
trained SVMs to recognize six functional classes: tri-
carboxylic acid (TCA) cycle, respiration, cytoplas-
mic ribosomes, proteasome, histones and helix-turn-
helix proteins. The MYGD class de�nitions come
from biochemical and genetic studies of gene func-
tion, whereas the microarray expression data mea-
sures mRNA levels of genes. Many classes in MYGD,
especially structural classes such as protein kinases,

will be unlearnable from expression data by any clas-
si�er. The �rst �ve classes were selected because they
represent categories of genes that are expected, on
biological grounds, to exhibit similar expression pro-
�les. Furthermore, Eisen et al. [1] suggested that
the mRNA expression vectors for these classes clus-
ter well using hierarchical clustering. The sixth class,
the helix-turn-helix proteins, is included as a control
group. Because there is no reason to believe that the
members of this class are similarly regulated, we did
not expect any classi�er to learn to recognize mem-
bers of this class based on mRNA expression mea-
surements.

The performance of the SVM classi�ers was com-
pared to that of four standard machine learning algo-
rithms: Parzen windows, Fisher's linear discriminant,
and two decision tree learners (C4.5 and MOC1). De-
scriptions of these algorithms can be found at http://
www.cse.ucsc.edu/research/compbio/genex. Perfor-
mance was tested by using a three-way cross-
validated experiment. The gene expression vectors
were randomly divided into three groups. Classi�ers
were trained by using two-thirds of the data and were
tested on the remaining third. This procedure was
then repeated two more times, each time using a dif-
ferent third of the genes as test genes.

The performance of each classi�er was measured by
examining how well the classi�er identi�ed the pos-
itive and negative examples in the test sets. Each
gene in the test set can be categorized in one of four
ways: true positives are class members according to
both the classi�er andMYGD; true negatives are non-
members according to both; false positives are genes
that the classi�er places within the given class, but
MYGD classi�es as non-members; false negatives are
genes that the classi�er places outside the class, but
MYGD classi�es as members. We report the number
of genes in each of these four categories for each of
the learning methods we tested.

To judge overall performance, we de�ne the cost of
using the method M as C(M ) = fp(M ) + 2 � fn(M ),
where fp(M ) is the number of false positives for
method M , and fn(M ) is the number of false nega-
tives for methodM . The false negatives are weighted
more heavily than the false positives because, for
these data, the number of positive examples is small
compared to the number of negatives. The cost for
each method is compared to the cost C(N ) for us-
ing the null learning procedure, which classi�es all
test examples as negative. We de�ne the cost sav-

ings of using the learning procedure M as S(M ) =
C(N )�C(M ).

Experiments predicting functions of unknown
genes were performed by �rst training SVM classi-
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�ers on the 2467 annotated genes for the �ve learn-
able classes. For each class, the remaining 3754 genes
were then classi�ed by the SVM.

Results and Discussion

SVMs outperform other methods. Our ex-
periments show that some functional classes of genes
can be recognized by using SVMs trained on DNA
microarray expression data. We compare SVMs to
four non-SVM methods and �nd that SVMs provide
superior performance.
Table 1 summarizes the results of a three-fold cross-

validation experiment using all eight of the classi-
�ers tested, including four SVM variants, Parzen win-
dows, Fisher's linear discriminant and two decision
tree learners. Performance is evaluated in the stan-
dard machine learning setting, in which each method
must produce a positive or negative classi�cation la-
bel for each member of the test set based only on
what it has learned from the training set. The �rst
four columns are the categories false positive (FP),
false negative (FN), true positive (TP) and true neg-
ative (TN), and the �fth is a measure of overall per-
formance.
For every class (except the helix-turn-helix class),

the best-performing method is a support vector ma-
chine using the radial basis or a higher-dimensional
dot product kernel. Other cost functions, with dif-
ferent relative weights of the false positive and false
negative rates, yield similar rankings of performance.
In �ve separate tests, the radial basis SVM performs
better than Fisher's linear discriminant. Under the
null hypothesis that the methods are equally good,
the probability that the radial basis SVM would be
the best all �ve times is 0:03. The results also show
the inability of all classi�ers to learn to recognize
genes that produce helix-turn-helix proteins, as ex-
pected.
The results shown in Table 1 for higher-order SVMs

are considerably better than the corresponding error
rates for clusters derived in an unsupervised fashion.
For example, using hierarchical clustering, the his-
tone cluster only identi�ed 8 of the 11 histones, and
the ribosome cluster only found 112 of the 121 genes
and included 14 others that were not ribosomal genes
[1].
We repeated the experiment with all four SVMs

four more times with di�erent random splits of the
data. The results show that the variance introduced
by the random splitting of the data is small, relative
to the mean. The easiest-to-learn functional classes
are those with the smallest ratio of standard devia-
tion to mean cost savings. For example, for the ra-
dial basis SVM, the mean and standard deviations of

the cost savings for the two easiest classes|ribosomal
proteins and histones|are 225:8�2:9 and 18:0�0:0,
respectively. The most diÆcult class, TCA cycle,
had a mean and standard deviation of 10:4 � 3:0.
Results for the other classes and other kernel func-
tions are similar (http://www.cse.ucsc.edu/research/
compbio/genex).

Signi�cance of consistently misclassi�ed an-

notated genes. The �ve di�erent three-fold cross-
validation experiments, each performed with four dif-
ferent kernels, yield a total of 20 experiments per
functional class. Across all �ve functional classes (ex-
cluding helix-turn-helix) and all 20 experiments, 25
genes are misclassi�ed in at least 19 of the 20 experi-
ments (Table 2). In general, these disagreements with
MYGD reect the di�erent perspective provided by
the expression data, which represents the genetic re-
sponse of the cell, and the MYGD de�nitions, which
have been arrived at through experiments or protein
structure predictions. For example, in MYGD, the
members of a complex are de�ned by biochemical co-
puri�cation, whereas the expression data may iden-
tify proteins that are not physically part of the com-
plex but contribute to proper functioning of the com-
plex. This will lead to disagreements in the form of
false positives. Disagreements between the SVM and
MYGD in the form of false negatives may occur for a
number of reasons. First, genes that are classi�ed in
MYGD primarily by structure (e.g., protein kinases)
may have very di�erent expression patterns. Second,
genes that are regulated at the translational level or
protein level, rather than at the trancriptional level as
measured by the microarray experiments, cannot be
correctly classi�ed by expression data alone. Third,
genes for which the microarray data is corrupt may
not be correctly classi�ed. False positives and false
negatives represent cases in which further biological
experimentation may be fruitful.

Many of the false positive genes in Table 2 are
known from biochemical studies to be important
for the functional class assigned by the SVM, even
though MYGD has not included these genes in
their classi�cation. For example, YAL003W and
YPL037C, assigned repeatedly to the cytoplasmic
ribosome class, are not strictly ribosomal proteins;
however, both are important for proper functioning of
the ribosome. YAL003W encodes a translation elon-
gation factor, EFB1, known to be required for the
proper functioning of the ribosome [17]. YPL037C,
EGD1, is part of the nascent polypeptide-associated
complex, which has been shown to bind translating
ribosomes and help target nascent polypeptides to
several locations, including the endoplasmic reticu-
lum and mitochondria [18]. The cell ensures that
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Table 1: Comparison of error rates for various classi�cation methods. The methods are the SVMs
using the scaled dot product kernel raised to the �rst, second and third power, the radial basis function
SVM, Parzen windows, Fisher's Linear Discriminant, and the two decision tree learners, C4.5 and MOC1.
The next �ve columns are the false positive, false negative, true positive and true negative rates summed
over three cross-validation splits, followed by the total cost savings (S(M )), as de�ned in the text.

Class Method FP FN TP TN S(M)
TCA D-p 1 SVM 18 5 12 2432 6

D-p 2 SVM 7 9 8 2443 9
D-p 3 SVM 4 9 8 2446 12
Radial SVM 5 9 8 2445 11
Parzen 4 12 5 2446 6
FLD 9 10 7 2441 5
C4.5 7 17 0 2443 -7
MOC1 3 16 1 2446 -1

Resp D-p 1 SVM 15 7 23 2422 31
D-p 2 SVM 7 7 23 2430 39
D-p 3 SVM 6 8 22 2431 38
Radial SVM 5 11 19 2432 33
Parzen 22 10 20 2415 18
FLD 10 10 20 2427 30
C4.5 18 17 13 2419 8
MOC1 12 26 4 2425 -4

Ribo D-p 1 SVM 14 2 119 2332 224
D-p 2 SVM 9 2 119 2337 229
D-p 3 SVM 7 3 118 2339 229
Radial SVM 6 5 116 2340 226
Parzen 6 8 113 2340 220
FLD 15 5 116 2331 217
C4.5 31 21 100 2315 169
MOC1 26 26 95 2320 164

Prot D-p 1 SVM 21 7 28 2411 35
D-p 2 SVM 6 8 27 2426 48
D-p 3 SVM 3 8 27 2429 51
Radial SVM 2 8 27 2430 52
Parzen 21 5 30 2411 39
FLD 7 12 23 2425 39
C4.5 17 10 25 2415 33
MOC1 10 17 18 2422 26

Hist D-p 1 SVM 0 2 9 2456 18
D-p 2 SVM 0 2 9 2456 18
D-p 3 SVM 0 2 9 2456 18
Radial SVM 0 2 9 2456 18
Parzen 2 3 8 2454 14
FLD 0 3 8 2456 16
C4.5 2 2 9 2454 16
MOC1 2 5 6 2454 10

HTH D-p 1 SVM 60 14 2 2391 -56
D-p 2 SVM 3 16 0 2448 -3
D-p 3 SVM 1 16 0 2450 -1
Radial SVM 0 16 0 2451 0
Parzen 14 16 0 2437 -14
FLD 14 16 0 2437 -14
C4.5 2 16 0 2449 -2
MOC1 6 16 0 2445 -6
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Table 2: Consistently misclassi�ed genes. The table lists all 25 genes that are most consistently misclas-
si�ed by the SVMs. Two types of errors are included: a false positive (FP) occurs when the SVM includes
the gene in the given class but the MYGD classi�cation does not; a false negative (FN) occurs when the
SVM does not include the gene in the given class but the MYGD classi�cation does.

Class Gene Locus Error Description
TCA YPR001W CIT3 FN mitochondrial citrate synthase

YOR142W LSC1 FN � subunit of succinyl-CoA ligase
YLR174W IDP2 FN isocitrate dehydrogenase
YIL125W KGD1 FN �-ketoglutarate dehydrogenase
YDR148C KGD2 FN component of �-ketoglutarate dehydrog. complex (mito)
YBL015W ACH1 FP acetyl CoA hydrolase

Resp YPR191W QCR2 FN ubiquinol cytochrome-c reductase core protein 2
YPL271W ATP15 FN ATP synthase � subunit
YPL262W FUM1 FP fumarase
YML120C NDI1 FP mitochondrial NADH ubiquinone 6 oxidoreductase
YKL085W MDH1 FP mitochondrial malate dehydrogenase
YGR207C FN electron-transferring avoprotein, � chain
YDL067C COX9 FN subunit VIIa of cytochrome c oxidase

Ribo YPL037C EGD1 FP � subunit of the nascent-polypeptide-associated complex
YLR406C RPL31B FN ribosomal protein L31B (L34B) (YL28)
YLR075W RPL10 FP ribosomal protein L10
YDL184C RPL41A FN ribosomal protein L41A (YL41) (L47A)
YAL003W EFB1 FP translation elongation factor EF-1�

Prot YHR027C RPN1 FN subunit of 26S proteasome (PA700 subunit)
YGR270W YTA7 FN member of CDC48/PAS1/SEC18 family of ATPases
YGR048W UFD1 FP ubiquitin fusion degradation protein
YDR069C DOA4 FN ubiquitin isopeptidase
YDL020C RPN4 FN involved in ubiquitin degradation pathway

Hist YOL012C HTA3 FN histone-related protein
YKL049C CSE4 FN required for proper kinetochore function
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Figure 1: Expression pro�le of YPL037C compared to the MYGD class of cytoplasmic ribosomal

proteins. YPL037C is classi�ed as a ribosomal protein by the SVMs but is not included in the class by
MYGD. The �gure shows the expression pro�le for YPL037C, along with standard deviation bars for the
class of cytoplasmic ribosomal proteins. Ticks along the X-axis represent the beginnings of experimental
series.
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expression of these proteins keeps pace with the ex-
pression of ribosomal proteins, as shown in Figure 1.
Thus, the SVM classi�es YAL003W and YPL037C
with ribosomal proteins.

A false positive in the respiration class, YML120C,
encodes NADH:ubiquinone oxidoreductase. In yeast,
this enzyme replaces respiration complex 1 [19] and
is crucial for transfer of high energy electrons from
NADH to ubiquinone, and thus for respiration [19,
20]. A consistent false positive in the proteasome
class is YGR048W (UFD1). Although not strictly
part of the proteasome, YGR048W is necessary for
proper functioning of the ubiquitin pathway [21],
which delivers proteins to the proteasome for prote-
olysis. Another interesting false positive in the TCA
class is YBL015W (ACH1), an acetyl-CoA hydrolase.
Although this enzyme catalyzes what could be con-
sidered an unproductive reaction on a key TCA cycle-
glyoxylate cycle substrate, its activity could be very
important in regulatingmetabolic ux. Hence, it may
be signi�cant that expression of this enzyme parallels
that of true TCA cycle enzymes.

A distinct set of false positives puts members of the
TCA pathway, YPL262W and YKL085W, in the res-
piration class. Although MYGD separates the TCA
pathway and respiration, both classes are important
for the production of ATP. In fact, the expression pro-
�les of these two classes are strikingly similar (data
not shown). Thus, although MYGD considers these
two classes separate, both the expression data and
other experimental work suggest that there is signi�-
cant regulatory overlap. The current SVMs may lack
suÆcient sensitivity to resolve two such intimately re-
lated functional classes using expression data alone.

Some of the false negatives occur when a protein
assigned to a functional class based on structure has
a special function that demands a di�erent regula-
tion strategy. For example, YKL049C is classi�ed as
a histone protein by MYGD based on its 61% amino
acid similarity with histone protein H3. YKL049C is
thought to act as part of the centromere [22]; how-
ever, the expression data shows that it is not co-
regulated with histone genes. A similar situation
arises in the proteasome class. Both YDL020C and
YDR069C may be loosely associated with the pro-
teasome [23, 24, 25], but the SVM does not classify
them as belonging to the proteasome because they are
regulated di�erently from the rest of the proteasome
during sporulation.

One limitation inherent in the use of gene expres-
sion data is that some genes are regulated at the
translational and protein levels. For example, four
of the �ve genes that the SVM was unable to iden-
tify as members of the TCA class are genes encod-

ing enzymes known to be regulated allosterically by
ADP/ATP, succinyl-CoA, and NAD+/NADPH [26].
Thus, the activities of these enzymes are regulated by
means that do not involve changes in mRNA level. If
their mRNA levels do not keep pace with those of
other TCA cycle enzymes, the SVM will not be able
to classify them correctly by expression data alone.

Other discrepancies appear to be caused by corrupt
data. For example, the SVM classi�es YLR075W as
a cytoplasmic ribosomal protein, but MYGD did not.
However, YLR075W is a ribosomal protein [27, 28],
and the original annotation in MYGD has since been
corrected. Some proteins|for example YGR207C
and YGR270W|may be prematurely placed in func-
tional classes based only on protein sequence simi-
larities. Other errors occur in the expression data
itself. Occasionally, the microarrays contain bad
probes or are damaged, and some locations in the
gene expression matrix are marked as containing
corrupt data. Four of the genes listed in Table 2
(YPR001W, YPL271W, YHR027C, and YOL012C)
are marked as such. In addition, although the SVM
correctly assigns YDL075W to the ribosomal pro-
tein class, YLR406C, essentially a duplicate sequence
copy of YDL075W, is not assigned to that class.
Similarly YDL184C is not assigned to the ribosome
class despite the correct assignment of its near twin
YDL133C-A. Because pairs of nearly identical genes
such as these cannot be distinguished by hybridiza-
tion, it is likely that the YLR406C and YDL184C
data is also questionable.

Functional class predictions for genes of un-

known function. In addition to validating the clas-
si�cation accuracy of SVM methods using genes of
known function, we used SVMs to classify previously
unannotated yeast genes. A common trivial out-
come of this experiment predicts a function for open
reading frames that overlap or are adjacent to an-
notated class members, a situation that occurs nu-
merous times in the current set of predicted ORFs in
the yeast genome. Because the expression array data
is gathered with dsDNA, and because in many cases
the extent of mRNA transcription beyond ORFs is
not known, adjacent or overlapping ORFs cannot al-
ways be distinguished, and we ignored these predic-
tions. Table 3 lists the 15 unannotated genes that
are predicted to be class members by at least three
of the four SVMs. The SVMs agree that these genes
are near the indicated functional class members in
expression space.

The predictions below may merit experimental
testing. In some cases described in Table 3, addi-
tional information supports the prediction. For ex-
ample, a recent annotation shows that a gene pre-
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Table 3: Predicted functional classi�cations for previously unannotated genes. The table lists the
names for unannotated genes that were classi�ed as members of a particular functional class by at least three
of the four SVM methods. No unannotated histones were predicted.

Class Gene Locus Comments
TCA YHR188C conserved in worm, S. pombe, human

YKL039W PTM1 major transport facilitator family; likely integral mem-
brane protein; similar YHL017w not co-regulated.

Resp YKR016W not highly conserved, possible homolog in S. pombe

YKR046C no convincing homologs
YPR020W ATP20 subsequently annotated: subunit of mitochondrial ATP

synthase complex
YLR248W CLK1/RCK2 cytoplasmic protein kinase of unknown function

Ribo YKL056C homolog of translationally controlled tumor protein, abun-
dant, conserved and ubiquitous protein of unknown func-
tion

YNL119W possible remote homologs in several divergent species
YNL255C GIS2 cellular nucleic acid binding protein homolog, seven CCHC

(retroviral) type zinc �ngers
YNL053W MSG5 protein-tyrosine phosphatase, overexpression bypasses

growth arrest by mating factor
YNL217W similar to bis (5' nucleotidyl)-tetraphosphatases

Prot YDR330W ubiquitin regulatory domain protein, S. pombe homolog
YJL036W member of sorting nexin family
YDL053C no convincing homologs
YLR387C 3 C2H2 zinc �ngers, similar YBR267W not co-regulated

dicted to be involved in respiration, YPR020W, is a
subunit of the ATP synthase complex, con�rming this
prediction [29]. YKL056C, a highly conserved protein
homologous to the mammalian translationally con-
trolled tumor protein [30], is co-regulated with ribo-
somal proteins, the �rst hint concerning its function.
A protein containing seven retroviral type zinc �ngers
is also co-regulated with ribosomal proteins, a com-
pelling �nding considering the activity of this type of
protein as an RNA chaperone [31]. In the proteasome
class, YDR330W has homology to ubiquitin regula-
tory protein domains, suggesting a role in ubiquitin-
dependent proteasome activity. The gene YJL036W
is a member of the sorting nexin family [32], and we
would predict that it is involved in the delivery of
proteins to the proteasome. Further biological work
on these genes will be necessary to determine whether
their regulation is truly providing clues to their func-
tion.

Conclusions

We have demonstrated that support vector ma-
chines can accurately classify genes into some func-
tional categories based on expression data from DNA
microarray hybridization experiments, and have

made predictions aimed at identifying the functions
of unannotated yeast genes. Among the techniques
examined, SVMs that use a higher-dimensional kernel
function provide the best performance|better than
Parzen windows, Fisher's linear discriminant, two de-
cision tree classi�ers, and SVMs that use the simple
dot product kernel. These results were generated in
a supervised fashion, as opposed to the unsupervised
clustering algorithms that have been previously con-
sidered [1, 3]. The supervised learning framework
allows a researcher to start with a set of interesting
genes and ask two questions: What other genes are
coexpressed with my set? And does my set contain
genes that do not belong? This ability to focus on the
key genes is fundamental to extracting the biological
meaning from genome-wide expression data.
It is not clear how many other functional gene

classes can be recognized from mRNA expression
data by this (or any other) method. We caution
that several of the classes were selected based on evi-
dence that they clustered using the mRNA expression
vectors de�ned by the 79 experiments available [1].
Other functional classes may require di�erent mRNA
expression experiments, or may not be recognizable
at all from mRNA expression data alone. However,
SVMs are capable of using other data, such as the
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presence of transcription factor binding sites in the
promoter region or sequence features of the protein
[16]. We have begun working with SVMs that clas-
sify using training vectors concatenated from multi-
ple sources [16, 33]. We believe these approaches have
signi�cant potential.
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