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ABSTRACT
Motivation: Despite advances in high-throughput methods for
discovering protein–protein interactions, the interaction net-
works of even well-studied model organisms are sketchy at
best, highlighting the continued need for computational meth-
ods to help direct experimentalists in the search for novel
interactions.
Results: We present a kernel method for predicting protein–
protein interactions using a combination of data sources,
including protein sequences, Gene Ontology annotations,
local properties of the network, and homologous interactions
in other species. Whereas protein kernels proposed in the lit-
erature provide a similarity between single proteins, prediction
of interactions requires a kernel between pairs of proteins.
We propose a pairwise kernel that converts a kernel between
single proteins into a kernel between pairs of proteins, and
we illustrate the kernel’s effectiveness in conjunction with a
support vector machine classifier. Furthermore, we obtain
improved performance by combining several sequence-based
kernels based on k-mer frequency, motif and domain content
and by further augmenting the pairwise sequence kernel with
features that are based on other sources of data.

We apply our method to predict physical interactions in yeast
using data from the BIND database. At a false positive rate of
1% the classifier retrieves close to 80% of a set of trusted
interactions. We thus demonstrate the ability of our method
to make accurate predictions despite the sizeable fraction of
false positives that are known to exist in interaction databases.
Availability: The classification experiments were performed
using PyML available at http://pyml.sourceforge.net. Data are
available at: http://noble.gs.washington.edu/proj/sppi
Contact: asa@gs.washington.edu

1 INTRODUCTION
Most proteins perform their functions by interacting with other
proteins.Therefore, information about the network of interac-
tions that occur in a cell can greatly increase our understanding
of protein function. Several experimental assays that probe
interactions in a high-throughput manner are now available.

∗To whom correspondence should be addressed.

These methods include the yeast two-hybrid screen and meth-
ods based on mass spectrometry (see von Meringet al., 2002
and references therein). The data obtained by these meth-
ods are partial: each experimental assay can identify only
a subset of the interactions, and it has been estimated that
for the organism with the most complete interaction network,
namely yeast, only about half of the complete ‘interactome’
has been discovered (von Meringet al., 2002). In view of the
very small overlap between interactions discovered by vari-
ous high-throughput studies, some of them using the same
method, the actual number of interactions is likely to be
much higher. Computational methods are therefore required
for discovering interactions that are not accessible to high-
throughput methods. These computational predictions can
then be verified by more labor-intensive methods.

A number of methods have been proposed for predict-
ing protein–protein interactions from sequence. Sprinzak and
Margalit (2001) have noted that many pairs of structural
domains are over-represented in interacting proteins and that
this information can be used to predict interactions. Sev-
eral authors have proposed Bayesian network models that
use the domain or motif content of a sequence to predict
interactions (Denget al., 2002; Gomezet al., 2003; Wang
et al., 2005). The pairwise sequence kernel was independ-
ently proposed in a recent paper (Martinet al., 2005) with
a sequence representation by 3mers. Other sequence-based
methods use coevolution of interacting proteins by comparing
phylogenetic trees (Ramani and Marcotte, 2003), correlated
mutations (Pazos and Valencia, 2002) or gene fusion which
works at the genome level (Marcotteet al., 1999). An altern-
ative approach is to combine multiple sources of genomic
information—gene expression, Gene Ontology (GO) annota-
tions, transcriptional regulation, etc. to predict comembership
in a complex (Zhanget al., 2004; Linet al., 2004).

One can consider two variants of the interaction prediction
problem: predicting comembership in a complex or predicting
direct physical interaction. In this work, we focus on the latter
task, and use interactions that are derived from the BIND data-
base (Baderet al., 2001), which makes a distinction between
experimental results that yield comembership in a complex
and interactions that are more likely to be direct ones.
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Kernel methods, and in particular support vector machines
(SVMs) (Schölkopf and Smola, 2002), have proven use-
ful in many difficult classification problems in bioinform-
atics (Noble, 2004). The learning task we are addressing
involves a relationship between pairs of protein sequences:
whether two pairs of sequences are interacting or not. The
standard sequence kernels (A kernel is a measure of similarity
that satisfies the additional condition of being a dot product
in some feature space; see Schölkopf and Smola, 2002 for
details.) described in the literature measure similarity between
single proteins. We propose a method for converting a ker-
nel defined on single proteins into a pairwise kernel, and we
describe the feature space produced by that kernel.

Our basic method uses motif, domain andkmer composi-
tion to form a pairwise kernel, and achieves better perform-
ance than simple methods based on BLAST or PSI-BLAST.
However, because it is difficult to predict interactions from
sequence alone, we incorporate additional sources of data.
These include kernels based on similarity of GO annotations,
a similarity score to interacting homologs in other species
and the mutual-clustering coefficient (Goldberg and Roth,
2003) that measures the tendency of neighbors of interact-
ing proteins to interact as well. Adding these additional data
sources significantly improves our method’s performance rel-
ative to a method trained using only the pairwise sequence
kernel. Using kernel methods for combining data from het-
erogeneous sources of data allows us to use high-dimensional
sequence data, whereas other studies on predicting protein–
protein interactions (Zhanget al., 2004; Linet al., 2004) use
a low dimensional representations which are appropriate for
any type of classifier.

2 KERNELS FOR PROTEIN–PROTEIN
INTERACTIONS

SVMs and other kernel methods derive much of their power
from their ability to incorporate prior knowledge via the
kernel function. Furthermore, the kernel approach offers the
ability to easily apply kernels to diverse types of data, includ-
ing fixed-length vectors (e.g. microarray expression data),
variable-length strings (DNA and protein sequences), graphs
and trees. In this work, we employ a diverse collection of
kernels described in this section.

2.1 Pairwise kernels
The kernels proposed in the literature for handling genomic
information, e.g. sequence kernels such as the motif and Pfam
kernels presented later in the section, provide a similarity
between pairs of sequences, or more generally, a similar-
ity between a representation of a pair of proteins. Therefore,
such kernels are not directly applicable to the task of predict-
ing protein–protein interactions, which requires a similarity
between two pairs of proteins. Thus, we want a function
K((X1,X2), (X′

1,X′
2)) that returns the similarity between

proteinsX1 andX2 compared with proteinsX′
1 andX′

2. We
call a kernel that operates on individual genes or proteins a
‘genomic kernel’, and a kernel that compares pairs of genes or
proteins a ‘pairwise kernel’. Pairwise kernels can be computed
either indirectly, by way of an intermediate genomic kernel,
or directly using features that characterize pairs of proteins.

The most straightforward way to construct a pairwise kernel
is to express the similarity between pairs of proteins in terms
of similarities between individual proteins. In this approach,
we consider two pairs to be similar to one another when each
protein of one pair is similar to one protein of the other pair.
For example, if proteinX1 is similar to proteinX′

1, andX2

is similar toX′
2, then we can say that the pairs(X1,X2) and

(X′
1,X′

2) are similar. We can translate these intuitions into the
following pairwise kernel:

K((X1,X2), (X
′
1,X′

2)) = K ′(X1,X′
1)K

′(X2,X′
2)

+ K ′(X1,X′
2)K

′(X2,X′
1),

whereK ′(·, ·) is any genomic kernel. This kernel takes into
account the fact thatX1 can be similar to eitherX′

1 or X′
2.

An alternative to the above approach is to represent a pair
of sequences(X1,X2) explicitly in terms of the domain or
motif pairs that appear in it. This representation is motivated
by the observation that some domains are significantly over-
represented in interacting proteins (Sprinzak and Margalit,
2001). A similar observation holds for sequence motifs as
well. Given a pair of sequencesX1,X2 represented by vectors
x1, x2, with componentsx(1)

i ,x(2)
i we form the vectorx12 with

componentsx(1)
i x

(2)
j +x

(2)
i x

(1)
j . We can now define the explicit

pairwise kernel:

K((X1,X2), (X
′
1,X′

2)) = K ′(x12, x′
12), (1)

wherex12 is the pairwise representation of the pair(X1,X2),
andK ′(·, ·) is any kernel that operates on vector data. It is
straightforward to check that for a linear kernel function,
the pairwise and explicit pairwise kernels are identical. The
explicit representation can be used in order to rank the rel-
evance of motif pairs with respect to the classification task.
This ranking is accomplished, e.g. by sorting the motif pairs
according to the magnitude of the corresponding weight vector
components.

2.2 Sequence kernels
We use three sequence kernels in this work: the spectrum
kernel (Leslieet al., 2002), the motif kernel (Ben-hur and
Brutlag, 2003) and the Pfam kernel (Gomezet al., 2003). The
feature space of these kernels is a set of sequence models, and
each component of the feature space representation measures
the extent to which a given sequence fits the model. The spec-
trum kernel models a sequence in the space of allkmers, and
its features count the number of times eachkmer appears in
the sequence.

i39



“bti1016” — 2005/6/10 — page 40 — #3

A.Ben-Hur and W.S.Noble

The sequence models for our motif kernel are discrete
sequence motifs, providing a count of how many times a dis-
crete sequence motif matches a sequence. To compute the
motif kernel we used discrete sequence motifs from the eMotif
database (Nevill-Manninget al., 1997). Yeast ORFs contain
occurrences of 17 768 motifs out of a set of 42 718 motifs.

Finally, the Pfam kernel uses a set of hidden Markov mod-
els (HMMs) to represent the domain structure of a protein,
and is computed by comparing each protein sequence with
every HMM in the Pfam database (Sonnhammeret al., 1997).
Every such protein–HMM comparison yields anE-value
statistic. Pfam version 10.0 contains 6190 domain HMMs;
therefore, each protein is represented by a vector of 6190 log
E-values. This Pfam kernel has been used previously to pre-
dict protein–protein interactions (Gomezet al., 2003), though
not in conjunction with the pairwise kernel described above.

For all three sequence kernels we use a a normalized linear
kernel, K(x,y)/

√
K(x,x)K(y,y); in the case of the Pfam

kernel we first performed an initial step of centering the kernel.

2.3 Non-sequence kernels
An alternative to using the pairwise kernel is the following:

K((X1,X2), (X
′
1,X′

2)) = K ′(X1,X2)K
′(X′

1,X′
2). (2)

This kernel is appropriate when similarity within the pair is
directly related to the likelihood that a pair of proteins inter-
act. In fact, this is a valid kernel even ifK ′ is not a kernel,
because in this formulationK ′ is simply a feature of the pair of
proteins. Consider GO annotations, for example: a pair of pro-
teins is more likely to interact if the two proteins share similar
annotations. In addition to GO annotation we also consider
local properties of the interaction network, and homologous
interactions in other species. We summarize these properties
as a vector of scoress(X1,X2), such that the kernel for the
non-sequence data can be any kernel appropriate for vector
data:

Knon-seq((X1,X2)), (X
′
1,X′

2)) = K ′(s(X1,X2), s(X′
1,X′

2)) ,
(3)

where we chose to use a Gaussian kernel forK ′.

2.3.1 A GO kernel Proteins that are not present in the same
cellular component or that participate in different biological
processes are less likely to interact. We represent this prior
knowledge using a kernel that measures the similarity of the
GO (Gene Ontology Consortium, 2000) annotations of a pair
of proteins, one kernel for each of the three GO hierarchies.
The feature space for the GO kernel is a vector space with
one component for each node in the directed acyclic graph
in which GO annotations are represented. Let the annotations
(nodes in the GO graph) assigned to proteinp be denoted by
Ap. Note that, in GO, a single protein can be assigned several
annotations. A component of the vector corresponding to node
a is non-zero ifa or a parent ofa is in Ap.

We consider two ways in which to define the dot product
in this space. When the non-zero components are set equal
to 1, then when each protein has a single annotation, and the
annotatinos are on a tree, the dot product between two pro-
teins is the height of the lowest common ancestor of the two
nodes. An alternative approach assigns annotationa a score
of − logp(a), wherep(a) is the fraction of proteins that have
annotationa. We then score the similarity of annotationsa,a′
as maxa′′∈ancestors(a)∩ancestors(a′) − logp(a′′). In a tree topo-
logy, this score is the similarity between the deepest common
ancestor ofa anda′, because the node frequencies are decreas-
ing along a path from the root to any node. The score is a dot
product with respect to the infinity norm on the annotation
vector space. This also holds when the proteins have more
than one annotation and the similarity between their annota-
tions is defined as the maximum similarity between any pair
of annotations. When one of the proteins has an unknown GO
annotation, the kernel value is set to 0.

2.3.2 Interactions in other species It has been shown that
interactions in other species can be used to validate or infer
interactions (Yuet al., 2004): the existence of interacting
homologs of a given pair of proteins implies that the ori-
ginal proteins are more likely to interact. We quantify this
observation with the following homology score for a pair of
proteins(X1,X2):

h(X1,X2) = max
i∈H(X1),j∈H(X2)

I (i, j)

× min(l(X1,Xi), l(X2,Xj)) ,

whereH(X) is the set of non-yeast proteins that are signific-
ant BLAST hits ofX, I (i, j) is an indicator variable for the
interaction between proteinsi andj , andl(Xk,Xi) is the neg-
ative of the logE-value provided by BLAST when comparing
proteink with proteini in the context of a given sequence data-
base. We used interactions in human, mouse, nematode and
fruit fly to score the interactions in yeast.

2.3.3 Mutual clustering coefficient Protein–protein inter-
action networks tend to be ‘cliquish’; i.e. the neighbors of
interacting proteins tend to interact. Goldberg and Roth (2003)
quantified this cohesiveness using the mutual clustering coef-
ficient (MCC). Given two proteinsu, v, their MCC can be
quantified, by the Jaccard coefficient|N(v)∪N(u)|/|N(v)∩
N(u)|, whereN(x) is the set of neighbors of a proteinx
in an interaction network. In our classification experiments
we performed cross-validation where the MCC in each cross-
validation fold is computed with respect to the interactions
that occur in the training set of that particular fold.

2.4 Combining kernels
Given a genomic kernelK, we denote byKp(K) the pair-
wise kernel that usesK. When several genomic kernels are
available, the final kernel can be defined as

∑
i Kp(Ki) or

asKp(
∑

i Ki). UsingKp(
∑

i Ki) mixes features between the
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individual kernels, while the feature space for
∑

i Kp(Ki)

includes pairs of features that originate from the same gen-
omic kernel. In practice, the results from these two different
approaches were very close, and the mixing approach was
used because of its lower memory requirement. A Gaussian
or polynomial kernel can be introduced at several stages:
instead of the linear genomic kernel as: exp(−γ (Kp(P ,P) −
2Kp(P ,P ′)+Kp(P ′,P ′)), whereP ,P ′ are two pairs of pro-
teins. We have not tried introducing a non-linear kernel at the
level of the genomic kernel; a Gaussian kernel at the level of
the pairwise kernel performed similar to the ‘linear’ pairwise
kernel, despite the high dimensionality of the resulting feature
space. The results reported in this paper are computed using
‘linear’ pairwise kernels.

2.5 Incorporating interaction reliability in
training

Several studies of protein–protein interaction data have noted
that different experimental assays produce varying levels of
false positives and have proposed methods for finding which
interactions are likely to be reliable (von Meringet al., 2002;
Sprinzaket al., 2003; Deaneet al., 2002) (see Section 3.1 for
details). We incorporate this knowledge about the reliability of
protein–protein interactions into the training procedure using
the SVM soft-margin parameterC (Schölkopf and Smola,
2002). This parameter puts a penalty on patterns that are mis-
classified or are close to the SVM decision boundary. Each
training example receives a value ofC that depends on its
reliability. For a training set with an equal number of positive
and negative examples we use two values:Chigh for interac-
tions believed to be reliable and for negative examples;Clow

for positive examples that are not known to be reliable.

3 METHODS
3.1 Interaction data
We focus on the prediction of physical interactions in yeast
and use interaction data from the BIND database (Baderet al.,
2001). BIND includes published interaction data from high-
throughput experiments as well as curated entries derived
from published papers. The advantage of BIND is that
it provides an explicit distinction between direct physical
interactions and comembership in a complex.

3.1.1 Positive and negative examples We use physical
interactions from BIND as positive examples, for a dataset
comprising 10 517 interactions among 4233 yeast proteins
(downloaded July 9, 2004). We eliminated self interactions
from the dataset since such interactions do not require a
pairwise kernel, and the GO and MCC features are not appro-
priate in this case. As negative examples we select random,
non-interacting pairs from the 4233 interacting proteins; the
number of negative examples was taken as equal to the number
of positive examples. In view of the large number of protein
pairs compared with the number of interactions, such a set of

negative examples is likely to contain very few proteins that
interact.

High-throughput protein–protein interaction data contain a
large fraction of false positives, estimated to be up to 50% in
some experiments (von Meringet al., 2002). Therefore, we
prepared a set of BIND interactions that are expected to have
a low rate of false positives. We use these reliable interactions
in two ways. We evaluate the performance of our method on
the reliable interactions because they are more likely to reflect
the true performance of the classifier. We also use reliability to
set the value of the SVM soft-margin parameter as discussed
in Section 2.5. ‘Gold standard’ interactions can be derived
from several sources:

• Interactions corroborated by interacting yeast paralogs.
Deaneet al. (2002) find 2829 interactions from the DIP
database that are supported by their paralogous verifica-
tion method (PVM). The estimated false positive rate of
this method is 1%.

• Interactions that are supported by interacting homologs in
multiple species are likely to be correct (Yuet al., 2004).

• Interactions that are discovered by different experimental
assays were estimated to be correct 95% of the time
(Sprinzaket al., 2003).

• Highly reliable methods, e.g. interactions derived from
crystallized complexes.

We do not use PVM-validated interactions because they
contain several biases.

• The test set is biased toward interactions that can be easily
discovered by sequence similarity.

• The list of PVM-validated interactions cannot be used
as-is to set the SVM soft-margin parameter in train-
ing because this may incorporate information about
interactions that are in the test set.

Also, we do not include interactions validated by interacting
homologs in other species, since that information is included
in the data as a feature. Therefore, for the purpose of assess-
ing performance we use a list of 750 interactions that were
validated by high-quality or multiple assays. For setting the
SVM soft-margin parameter we augment the 750 interactions
with PVM-validated interactions that are computed on the
basis of the training data alone. Training is performed on all
interactions so that sensitivity is not sacrificed.

3.2 BLAST/PSI-BLAST based ranking
We compare our method with a simple ranking method that
assigns a candidate interaction a score based on its similarity
to the interacting pairs in the training set. Specifically, let
l(X,X′) denote the negative log of theE-value assigned by
PSI-BLAST (BLAST) when searchingX againstX′ in the
context of a large database of sequences, and letI (i, j) be an
indicator variable for the interaction between proteinsi andj .
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Table 1. ROC scores for the various methods computed using 5-fold cross-validation

Method Kernel ROC score ROC50 score

BLAST — 0.74 0.18
PSIBLAST — 0.78 0.11
Non-sequence Knon-seq 0.95 0.37
Motif Kp(Kmotif) 0.76 0.17
Pfam Kp(KPfam) 0.78 0.20
Spectrum (k = 3) Kp(Kspec) 0.81 0.05
Motif + Pfam Kp(Kmotif + KPfam) 0.82 0.22
Motif + Pfam+ spectrum Kp(Kmotif + KPfam+ Kspec) 0.86 0.17
All kernels Kfeat+ Kp(Kmotif + KPfam+ Kspec) 0.97 0.44
All + reliability Kfeat+ Kp(Kmotif + KPfam+ Kspec) 0.97 0.58

Training data include all BIND physical interactions. ROC scores are computed on reliable interactions that do not include PVM-validated interactions. The BLAST and PSIBLAST
methods rank interactions according to Equation (4). The ‘kernel’ column of the table shows which kernel was used in conjunction with the SVM classifier. The notationKp(Kg)

denotes that the pairwise kernel was derived from a genomic kernelKg. TheKnon-seqis a Gaussian kernel over the non-sequence features; in each method it participates in, the width
of the Gaussian was determined by cross-validation as part of the classifier’s training. The all-reliable method uses information on reliability to set the SVM soft-margin parameter
as described in Section 2.5.

l(X,X′) is positive for significant matches and increases as the
quality of the match increases. The score for a query(X1,X2)

is defined as:

max
i∈P,j∈P

I (i, j) min(l(X1,Xi), l(X2,Xj)) , (4)

whereP is the set of all proteins in the training set. In these
experiments, we use PSI-BLAST scores computed in the
context of the Swiss-Prot database (version 40, containing
101 602 proteins).

3.3 Figures of merit
Throughout this paper we evaluate the quality of a predictive
method using two different metrics. Both metrics—the area
under the receiver operating characteristic curve (ROC score),
and the normalized area under that curve up to the first 50 false
positives (ROC50 score)—aim to measure both sensitivity and
specificity by integrating over a curve that plots true positive
rate as a function of false positive rate. We include both metrics
in order to account for two different types of scenarios in
which a protein–protein interaction prediction method might
be employed.

In the first scenario, imagine that you have developed a
low-throughput method for detecting whether a given pair of
proteins interacts. Rather than testing your method on ran-
domly selected pairs of proteins, you could use a predictive
algorithm to identify likely candidates. In this case, you would
start from the top of the ranked list of predictions, testing pairs
until you ran out of time or money, or until the success rate
of the predictor was too low to be useful. In this scenario, a
predictor that maximizes the quality of the high-confidence
interactions i.e. that maximizes the ROC50 score, is going to
be most useful.

In the second, more common scenario, you are interested
in a particular biological system. You run the predictive
algorithm, and you check your favorite set of proteins to see

whether they participate in any predicted interactions. In this
case, you do not care about the high-confidence interactions
above; instead, you would like to be sure that the complete set
of predictions is of high quality. In this case you are interested
in the ROC score of the classifier.

4 RESULTS
We report, in this section, the results of experiments in
predicting protein–protein interactions using an SVM clas-
sifier with various kernels, and compare these with a simple
method based on BLAST or PSI-BLAST. All the experiments
were performed using the PyML machine learning framework
available at http://pyml.sourceforge.net. We begin this sec-
tion with results obtained using the various kernels and kernel
combinations, followed by a discussion of the choice of negat-
ive examples, and a section that shows the effects of choosing
a non-redundant set of proteins.

4.1 Main results
We report results that are computed using 5-fold cross-
validation on all BIND physical interactions. The SVM soft-
margin parameter was not optimized—we used the default low
value for this parameter to account for the noise in the data.
The ROC/ROC50 curve is then computed for those reliable
interactions that were not obtained using the PVM method
as discussed in Section 3.1. The ROC statistics that summar-
ize these experiments are reported in Table 1 and the selected
ROC curves are shown in Figure 1.

Our basic method uses a pairwise kernel based on one of sev-
eral sequence kernels—the motif, Pfam and spectrum kernels.
The performance of the motif and Pfam kernels is comparable,
with a slight advantage for the Pfam kernel (the ROC scores
are 0.76 and 0.78 and ROC50 scores are 0.17 and 0.20). The
spectrum kernel (usingkmers of length 3) achieves a higher
ROC score of 0.81, but its ROC50 score is significantly lower
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(a)

(b)

Fig. 1. ROC (a) and ROC50 (b) curves for several methods. Best performance is obtained using a kernel that combines all the kernels presented
in the paper. Additional results are summarized in Table 1, along with a description of the methods.

than that of the Pfam and motif kernels. The higher ROC
score can be explained by the fact that the motif and the Pfam
methods are limited in their sensitivity by the motifs and the
domain models available. However, when such models offer
a good description of a sequence, their predictions are likely
to be more accurate, which is reflected in the much higher
ROC50 scores of these methods. Each of the pairwise kernels
by itself is not doing much better than BLAST or PSI-BLAST,
but once they are combined, they offer improved performance.
We note that using a spectrum kernel withkmers of length 4
did not improve the performance of the method.

We now explore the effect of adding to the sequence ker-
nels, a kernel based on three types of non-sequence data—GO
annotations, the homology score and the MCC. For the
non-sequence features, we first standardized the data (sub-
tracted the mean of each feature and divided by the standard
deviation), and used a Gaussian kernel whose width was
determined by cross-validation.

Combining the non-sequence features with the pairwise
sequence kernel yielded better performance than any method
by itself in both performance metrics. Furthermore, setting the
soft-margin parameter of the SVM according to the reliability
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of the interactions provided another significant boost to the
performance. Its ROC and ROC50 scores were 0.98 and
0.58, respectively; at a false positive rate of 1% the classifier
retrieves∼80% of the trusted interactions. In this experiment
we did not try to optimize the ratio between the two soft margin
constants, and usedClow = 0.01Chigh.

The main contribution to the gain in performance comes
from the GO-process kernel feature. Its ROC score by itself
is 0.68 on all the BIND interactions and 0.95 when limiting
to the reliable positive examples. The difference between the
two numbers is probably due to the sizable fraction of false
interactions in the BIND dataset. In the following subsection
we point out scenarios where the GO data are not useful. The
ROC score for the MCC feature was 0.68 on all BIND inter-
actions and 0.53 when computed on the reliable interactions.
The large difference for the MCC feature is a result of the fact
that the MCC requires a large number of interactions to be
useful. At a BLAST cutoff of 1e−10, 329 interactions from
BIND were supported by interactions from other species, as
opposed to 49 negative examples. The ROC score for this fea-
ture by itself is low since it is sparse, i.e. is informative for a
small number of interactions.

4.2 The role of GO annotations
In order to understand the difference in the role of the sequence
kernels and the non-sequence kernels, we compared the two
kernels on the task of distinguishing between physically inter-
acting proteins pairs and those that are members of the same
complex. In this case, the negative examples are chosen as
protein pairs that are known to belong to the same complex
but are not known to physically interact. This set of negative
examples is likely to be more noisy than the non-interacting
set, because complexes that are not accessible by yeast two-
hybrid probably contain many physical interactions. But still,
the motif-pairwise method achieves an ROC score of 0.78,
very close to the value obtained with non-interacting negative
examples. In this task, a classifier based on the non-sequence
kernel fails with an ROC score of 0.5. This is due to the fact that
cocomplexed proteins, such as physically interacting proteins,
tend to have similar GO annotations and network properties,
where as the motif and Pfam rely on a signal that is often dir-
ectly related to the interaction site itself (Wanget al., 2005).
Similar observations can be made for other features used to
predict cocomplexed proteins, such as gene-expression data.

4.3 Choosing negative examples
Recall that examples of non-interacting proteins were chosen
as random pairs of interacting proteins. To test the stability of
our results with respect to the choice of negative examples, we
ran a set of experiments using 10 different randomly selected
sets of non-interacting proteins. Predictions were made using
the motif kernel. The standard deviation of the resulting ROC
scores was 0.003, showing good stability.

Significant attention has been paid to the problem of select-
ing gold standard interacting protein pairs for the purposes
of training and validating predictive computational meth-
ods (Jansenet al., 2003). However, less emphasis has been
placed on the choice of non-interacting protein pairs. In this
study, we selected negatives uniformly at random. We find
that this strategy leads to consistent behavior and avoids bias.

The possibility for bias due to the method of constructing
negative examples is evidenced by results reported in a related
paper (Martinet al., 2005). In this work, the authors report
that a pairwise spectrum kernel provides highly accurate pre-
dictions of yeast interactions using a dataset studied in Jansen
et al. (2003). The positive examples in this dataset satisfy our
criteria of trusted interactions, and one might conclude that
the use of highly reliable interactions is the reason for the
success of the predictive method. However, we found that the
method of choosing negative examples has a strong effect on
the performance: the negative examples from Jansenet al.
(2003) were chosen as pairs of proteins that are known to
be localized in different cellular compartments. This makes
these protein pairs much less likely to interact than randomly
selected pairs, but the selection constraints impose a bias on
the resulting distribution that makes the overall learning task
easier [note that this is less likely to affect the results of non-
sequence based methods, such as the one used by Jansenet al.
(2003)]. To illustrate this effect, we created datasets with neg-
ative examples taken as pairs whose GO component similarity,
as measured by our kernel, is below a given threshold. The
performance of the resulting classifier varied as we varied
this threshold (Table 2). This constrained selection method
was tested with the spectrum and motif kernels using both the
BIND interaction data and a set of trusted interactions similar
to the one used by Martinet al. (2005) extracted from DIP
and MIPS (Meweset al., 2000; Xenarioset al., 2002). For
the spectrum kernel, the ROC (ROC50) scores varied from
0.87 (0.08) to 0.97 (0.46) on the DIP/MIPS data and from
0.77 (0.04) to 0.95 (0.36) on the BIND data, as the threshold
was lowered from 0.5 to 0.04. Similarly, although slightly
less pronounced, results were obtained for the motif pairwise
kernel.

4.4 The dependence on interacting paralogs
The yeast genome contains a large number of duplicated
genes. Since we are using a sequence-based method to pre-
dict interactions, we need to determine to what extent the
performance depends on the presence of interacting paralogs.
We therefore performed an experiment in which the train-
ing set and test set do not contain proteins whose BLAST
E-values are more significant than a given threshold. In this
case we performed 2-fold cross-validation instead of 5-fold
cross-validation. For the pairwise motif–Pfam–spectrum ker-
nel the ROC score decreased from 0.86 with no constraint to
0.81 when the training and test sets did not contain proteins
whose BLASTE-values were better than 0.1. The ROC score
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Table 2. The dependence of the performance of the spectrum pairwise
method on the similarity between localization annotations in negative
examples

Dataset Threshold ROC ROC50

BIND 0.50 0.77 0.04
0.10 0.89 0.15
0.07 0.91 0.21
0.05 0.92 0.25
0.04 0.95 0.36

DIP/MIPS 0.5 0.87 0.08
0.1 0.94 0.22
0.07 0.95 0.32
0.05 0.96 0.34
0.04 0.97 0.46

Enforcing the condition that no two proteins in the set of negative examples have a
GO similarity that is less than a given threshold puts a constraint on the distribution of
negative examples. This constraint makes it easy for the classifier to distinguish between
positive and negative examples, and the effect gets stronger as the threshold becomes
smaller. We performed the experiment on the BIND interaction dataset and on a dataset
of reliable interactions derived from DIP and MIPS interactions.

for the PSI-BLAST (BLAST) method went down from 0.78
(0.74) to 0.62 (0.62). This illustrates that the kernel combina-
tion is less dependent on the presence of interacting paralogs
than BLAST or PSI-BLAST.

5 DISCUSSION
In this paper we presented several kernels for prediction of
protein–protein interactions and used them in combination for
improved performance. The concern regarding the pairwise
kernel is the high dimensionality of its feature space, which is
quadratic in the number of features of the underlying kernel.
We considered an alternative kernel which uses summation
instead of the multiplication used in the expression for the
pairwise kernel, similar to the work of Gomezet al. (2003).
The performance of the summation kernel is not as good as
the corresponding pairwise kernel, showing the advantage of
using pairs of features.

When training a classifier to predict protein–protein inter-
actions, there is a balance between placing in the training
set only trusted interactions as opposed to trying to maxim-
ize the number of positive examples by adding interactions
about which we are less sure. When using a sequence-based
approach, as we have done here, the sensitivity of the method
may depend on the richness of the training set. We have shown
in this paper that we are able to use a larger set of noisy data
while still achieving a good performance. As an alternative
to training on a dataset that includes false positive interac-
tions we plan to first apply a step of filtering the interaction
data on the basis of features of trusted interactions, in order to
maximize the number of interactions that can be considered
reliable.

We also made no attempt to purge from our dataset examples
that contain missing data (missing GO annotations). When
trying to make predictions on unseen data, these data will
contain missing data and so, the method is more likely to
generalize if presented with examples containing missing data
during training.

During the time of writing this paper we found that the
pairwise approach was proposed by Martinet al. (2005). They
used only the spectrum kernel, whereas here we considered
several sequence kernels. We found that the spectrum kernel
works better than the motif and Pfam kernels according to the
ROC metric, but the spectrum kernel does not work as well
as the motif and Pfam kernels according to the ROC50 metric.
Apparently, the signal that the spectrum kernel generates is
not as specific as that of the other kernels.

In addition, we have illustrated that pairwise sequence ker-
nels can be successfully combined with non-sequence data.
In this work, we have not attempted to learn the weights
of the various kernels as done by Lanckrietet al. (2004).
This is an avenue for future work, although solving the res-
ulting semi-definite programming problem promises to be
computationally expensive, owing to the large training sets
involved. We also plan to consider additional sources of data
such as gene expression and transcription factor binding data,
which have also been shown to be informative in predicting
protein–protein interactions (Zhanget al., 2004).
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