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Abstract

Accurately modeling the DNA sequence preferences of transcription factors (TFs), and using these models to predict in vivo
genomic binding sites for TFs, are key pieces in deciphering the regulatory code. These efforts have been frustrated by the
limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices (PSSMs),
which may match large numbers of sites and produce an unreliable list of target genes. Recently, protein binding microarray
(PBM) experiments have emerged as a new source of high resolution data on in vitro TF binding specificities. PBM data has
been analyzed either by estimating PSSMs or via rank statistics on probe intensities, so that individual sequence patterns are
assigned enrichment scores (E-scores). This representation is informative but unwieldy because every TF is assigned a list of
thousands of scored sequence patterns. Meanwhile, high-resolution in vivo TF occupancy data from ChIP-seq experiments is
also increasingly available. We have developed a flexible discriminative framework for learning TF binding preferences from
high resolution in vitro and in vivo data. We first trained support vector regression (SVR) models on PBM data to learn the
mapping from probe sequences to binding intensities. We used a novel k-mer based string kernel called the di-mismatch
kernel to represent probe sequence similarities. The SVR models are more compact than E-scores, more expressive than
PSSMs, and can be readily used to scan genomics regions to predict in vivo occupancy. Using a large data set of yeast and
mouse TFs, we found that our SVR models can better predict probe intensity than the E-score method or PBM-derived
PSSMs. Moreover, by using SVRs to score yeast, mouse, and human genomic regions, we were better able to predict
genomic occupancy as measured by ChIP-chip and ChIP-seq experiments. Finally, we found that by training kernel-based
models directly on ChIP-seq data, we greatly improved in vivo occupancy prediction, and by comparing a TF’s in vitro and in
vivo models, we could identify cofactors and disambiguate direct and indirect binding.
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Introduction

Gene regulatory programs are orchestrated by transcription

factors (TFs), proteins that coordinate expression of target genes

both through direct interaction with DNA and with non-DNA-

binding accessory proteins (cofactors). A recent catalog of human

and mouse TFs documented almost 900 likely TFs in the human

genome, including over 500 with sequence-specific binding to

double-stranded DNA [1]. Accurately modeling the DNA

sequence preferences of these TFs, and using these sequence

preferences in an appropriate way to predict whether the TF can

bind a genomic site in vivo, are key pieces in unraveling the

regulatory code. For many years, these efforts have been frustrated

by the limited availability and quality of TF binding site motifs,

usually represented as a position-specific scoring matrix (PSSM) or

a consensus sequence. These motifs may match thousands of sites

in intergenic regions, producing an unreliable list of potential TF

target genes. [2] showed that motif hits in yeast could be filtered by

TF occupancy profiles measured by ChIP-chip experiments,

producing a better quality regulatory map. However, TF

occupancy is condition-specific and, in metazoan genomes, cell

type-dependent, due to differences in chromatin state, concentra-

tions of cofactors, and other epigenetic determinants. Since it is

not feasible to collect occupancy data for all TFs and all possible

cellular contexts, we must develop better methods for predicting

in vivo occupancy, which will depend in part on improving our

models of TF binding preferences.

Recently, protein binding microarray technology (PBM) has

emerged as a new high-throughput technique to obtain more

comprehensive data on a TF’s in vitro sequence specificities [3].

PBM experiments measure binding of a fluorescently tagged TF or

TF binding domain to a carefully designed set of double-stranded

DNA probes which cover the space of all possible DNA 10-mers.

So far, PBM data has been analyzed by extracting PSSMs or

computing rank statistics on probe intensities from the TF binding

experiment [3]. Traditional PSSMs may underfit PBM data by

failing to capture subtle but detectable sequence preferences.

Alternatively, an enrichment score (E-score) can be computed for
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each short sequence pattern, e.g. all possible 8-mers [3] or longer

gapped k-mer patterns. The collection of 8-mers with high E-scores

then constitutes a kind of binding profile, with the E-score value

giving a ranking of binding preferences. This representation provides

much more information about a TF’s DNA sequence affinities than

a PSSM, but it is quite unwieldy, as each TF is assigned a list of

thousands of scored k-mer sequence patterns. Moreover, the E-score

approach only implements a rough summarization of the raw probe-

level intensity data and, in particular, treats each 8-mer (or longer

gapped) pattern independently without attempting to exploit

sequence similarities between 8-mers.

In recent years, there have been numerous successful applica-

tions of discriminative machine learning techniques to sequence

modeling problems in computational biology (reviewed in [4]),

including k-mer based string kernel methods that exploit

approximate matches of short sequence patterns [5,6]. These

studies suggest that a more compact and accurate model of TF

binding affinities could be learned from PBM data by training on

probe sequences with a suitable kernel approach. In the first part

of our study, we used a supervised learning strategy to obtain more

accurate TF binding preference models from in vitro PBM probe-

level data. As a component of this strategy, we developed a novel

string kernel for comparing short double-stranded DNA sequences

in a manner that captures similarity of potential TF binding sites.

This kernel, called the di-mismatch kernel, is a first order Markov

mismatch kernel – meaning that it is based on the alphabet of

dinucleotides (see Materials and Methods) – and extends the k-

mer based string kernel methods that we and others have used for

a wide range of problems involving modeling of biological

sequences. In our approach, we used k-mer based string kernels

for representing the similarity of double-stranded probe sequences

on the PBM, and we trained support vector regression (SVR)

models to directly learn the mapping from probe sequence to

binding intensity from PBM training data (Figure 1, top). The

trained models can then be used directly to scan intergenic

regions, yielding a predicted occupancy profile (Figure 1, bottom).

To benchmark our approach, we used a large data set of

mouse and yeast TFs from three separate studies for which PBM

data for two independent probe designs is available. In these

cases, we can train SVR models and compute E-scores using data

from one PBM probe design and test how well each method

predicts the high-intensity probes in the second probe design. We

found that our SVR method strongly and consistently outper-

formed both the E-score and PSSM methods for this in vitro

binding prediction task. Moreover, by using SVRs to score yeast

intergenic regions as well as mouse and human genomic regions,

we were better able to predict genomic occupancy as measured

by ChIP-chip and ChIP-seq, compared with a previously

described occupancy scoring method based on E-scores or

PSSM-based prediction.

In the second part of our study, we trained kernel-based SVM

models directly on ChIP-seq data, learning to discriminate

between ChIP-seq peak and non-peak genomic regions. We call

these in vivo models, although the ChIP-seq experiments are

performed in cell lines, to distinguish them from PBM-trained in

vitro models. We found that the ChIP-derived SVM models

significantly improve TF occupancy prediction in mammalian

genomes when compared to PBM-derived SVR models. More-

over, our SVM approach outperforms existing PSSM approaches

such as Weeder and MDscan [7,8]. Finally, we performed a

feature analysis to extract k-mers contained in both the in vitro and

in vivo models. In the latter case, we were able to identify binding

information about cofactors and disambiguate direct and indirect

binding. These results suggest a strategy for combining discrimi-

natively trained models from in vitro and in vivo data in order to

decipher the transcriptional regulatory code.

Results

SVRs with di-mismatch kernel methods learn in vitro TF
sequence preferences

A PBM experiment provides high resolution data on the

binding affinities of a TF, comprising *44K double stranded

DNA probes and corresponding measured probe intensities, which

quantify the TF binding affinities for the probe sequences. The

unique sequence in each probe is a 36-mer, and the probe set is

mathematically specified to contain all possible 10-mers as

subsequences. We used the probe data as labeled training

examples, i.e. pairs (x, y)~(sequence, intensity), for learning a

function f (x) that predicts binding intensity from (36-mer)

sequences. Since we were not only interested in learning to

distinguish between bound and unbound probes but also

predicting the range of binding affinities, we used support vector

regression (SVR) to train our models.

To compare pairs of probe sequences for SVR training, we

developed a novel string kernel called the di-mismatch kernel,

which is a k-mer based string kernel adapted to the problem of TF

binding models (see Materials and Methods). Briefly, this kernel

computes a similarity between probe sequences based on inexact

matches to k-mer features, allowing up to m mismatches, where

we count mismatches in the alphabet of dinucleotides. This choice

reduces the size of the ‘‘mismatch neighborhood’’ of a given k-mer

(i.e. fewer k-mers are similar to it) and favors mismatches that

occur consecutively. A typical parameter choice is (k, m)1~
(13, 5)1, i.e., considering 13-mer sequences, allowing up to 5 mis-

matches, and operating in the first order alphabet of dinucleotides.

Trained SVRs yield more accurate in vitro TF binding
models

We first tested the performance of our SVR models on in vitro

binding preferences, in order to establish that they could better

capture TF sequence specificities than existing approaches. For 33

Author Summary

Transcription factors (TFs) are proteins that bind sites in the
non-coding DNA and regulate the expression of targeted
genes. Being able to predict the genome-wide binding
locations of TFs is an important step in deciphering gene
regulatory networks. Historically, there was very limited
experimental data on the DNA-binding preferences of most
TFs. Computational biologists used known sites to estimate
simple binding site motifs, called position-specific scoring
matrices, and scan the genome for additional potential
binding locations, but this approach often led to many false
positive predictions. Here we introduce a machine learning
approach to leverage new high resolution data on the
binding preferences of TFs, namely, protein binding
microarray (PBM) experiments which measure the in vitro
binding affinities of TFs with respect to an array of double-
stranded DNA probes, and chromatin immunoprecipitation
experiments followed by next generation sequencing (ChIP-
seq) which measure in vivo genome-wide binding of TFs in a
given cell type. We show that by training statistical models
on high resolution PBM and ChIP-seq data, we can more
accurately represent the subtle DNA binding preferences of
TFs and predict their genome-wide binding locations. These
results will enable advances in the computational analysis of
transcriptional regulation in mammalian genomes.
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yeast and 114 mouse TFs, experimental data for two independent

PBM array designs were available [9,10], measuring TF binding

against two completely disjoint PBM probe sets. This combined

data set provided a perfect cross-validation setting where we

trained a model using data from one array design (‘‘training

PBM’’) and then tested the model’s ability to predict binding

preferences on the other array design’s probe sequences (‘‘test

PBM’’). We benchmarked the SVR models against the E-score

approach [3], using the E-scores for all 8-mer patterns, both

contiguous and gappy, as computed and posted on the Uniprobe

Figure 1. Supervised learning of TF sequence specificities from protein binding microarrays. In our approach, we directly learn the
mapping from double-stranded DNA probe sequence to intensity in the PBM TF binding experiment by using support vector regression (SVR)
together with novel k-mer based string kernels. Probe sequences containing high affinity binding sites have high intensity in the PBM binding
experiment; such probes are shown bound by the fluorescently tagged TF (left) and are indicated by green points in the SVR training (right). The SVR
predicts probe intensity from probe sequence composition. The trained SVRs can be used to scan intergenic regions to predict in vivo TF occupancy.
doi:10.1371/journal.pcbi.1000916.g001
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database [11]. E-scores are modified Wilcoxon rank statistics that

assess the enrichment of a given 8-mer sequence pattern in probe

sequences at the top of the intensity ranking in a PBM experiment.

These scores range from 20.5 to 0.5, where scores approaching

0.5 indicate that the 8-mer pattern is mostly present in bound

probe sequences. In their yeast in vivo predictions, [9] identify high

scoring 8-mer patterns to predict TF binding preferences.

Therefore, we compared SVR performance to a maximum E-

score approach, where each probe sequence in the test PBM is

assigned the maximal E-score over the 8-mer patterns it contains,

and the E-scores are computed on the training PBM. We call this

the E-max score. We note that due to feature selection, our models

contain no more than 4,000 k-mer features. By contrast, for the

data set 114 mouse TFs, the average number of k-mers with E-

scores above 0.35 (the threshold used for reporting the pattern)

was 13,300, with just 10% of the TFs having fewer than 3,000 k-

mers and 64% having more than 10,000 k-mers. In this sense, the

SVR models are more compact than the E-score approach.

Because we want the models to predict the most preferred

binding sequences, we first validated the results by counting how

many of the top 100 predicted probes are in the top 100 highest

intensity probes in the test data. Naturally, these scores range from

0 to 100, with 100 indicating perfect detection of the preferred test

probes by the top predictions; we refer to these validation scores as

‘‘the detection of the top 100 probes’’. For each method and each

TF, we averaged the detection rates over the two PBM designs to

get one representative score for the TF.

To ensure that our model was not specifically tuned to the PBM

array data published in the Bulyk lab, we tested our model on

another set of yeast PBM arrays published by [12]. Although the

PBM array design is intrinsically the same, the probe sequences

are different. Two array designs were used to run experiments on

37 yeast TFs and, as before, we perform a cross-validation

experiment and compare to the E-max performance by using the

published E-scores for this data set. In Figure 2 (a), we show a

scatter plot for the three datasets, contrasting SVR to the E-max

scores for yeast and mouse PBM data. When a point lies above the

diagonal line, the SVR model is better at detecting the top 100

than the E-max approach; we observe that over 80% of the points

lie above the diagonal (149 out of 184 TFs). This performance

advantage is not achieved with standard string kernels as the

spectrum and regular mismatch kernels. When we tested the

mismatch kernel with parameters that intuitively seemed suitable –

(k, m)~(8, 0), (9, 1), (13, 5) – we found little improvement over

E-max and much weaker performance than the di-mismatch

kernel (see Figure S4 in Text S1).

To compare our discriminative model against a standard PSSM

motif approach, we also tested the performance of PBM-derived

PSSMs for the mouse TF data set [10]. PSSMs for these TFs,

derived from PBM probe intensity data using the Seed-and-

Wobble algorithm [3], are available through the Uniprobe

database. However, for the Uniprobe motifs, data from both

PBM array designs for a TF have been combined to estimate a

single PSSM. For a fair comparison in our cross-validation setting,

we therefore re-ran the Seed-and-Wobble algorithm on each PBM

experiment separately, using parameters similar to those adopted

for the published motifs: we used patterns of 8-mers (allowing two

gaps) in Seed-and-Wobble and then ‘‘trimmed’’ the resulting

PSSM to maximize similarity (as measured by KL divergence) to

the published PSSM. Then we used the PSSM derived from the

first array design to test on probe sequences from the second array

design, and vice versa. We found that SVR strongly outperforms

PSSMs (Figure 2 (b) with wins on 81% of the TFs, while E-max

essentially ties the PSSM performance (E-max wins on 52% of

TFs, Figure S1 in Text S1), suggesting that E-max and PSSM

approaches are similar and correlated. We note that since the

Seed-and-Wobble method uses on E-scores to derive PSSMs, this

correlation is perhaps expected.

We note that other algorithms for extracting PSSMs from PBMs

have also been proposed, including RankMotif++ [13] (see Figure

S3 in Text S1), which was shown to outperform Seed-and-Wobble

on a set of five TFs in a similar assessment using cross-validation

Figure 2. SVR models improve over E-scores and PSSMs for in vitro binding prediction. (a) The scatter plot shows the detection of the top
100 probes using maximum E-scores (x-axis) and the SVR model (y-axis) in the prediction of in vitro TF binding preferences. Each point corresponds
to one TF. The figure contains 37 yeast TFs from [12], 33 yeast TFs from [9] (blue), and 114 mouse TFs from [10] (red). (b) This panel is similar to panel
(a), but compares the SVR versus PBM-derived PSSMs for the 114 mouse TFs.
doi:10.1371/journal.pcbi.1000916.g002
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over probe designs. However, even in this assessment, RankMo-

tif++ did not outperform an 8-mer based method similar to E-max.

More precisely, instead of using E-scores, 8-mers were scored by

their median training probe intensity or ‘‘Z-score’’, and test probe

sequences were scored by the maximal median intensity over 8-

mers, which we can call the ‘‘Z-max’’ approach. For completeness,

we did a complete benchmarking of the E-max and Z-max

methods and found no significant difference in their performance

(Figure S2 in Text S1). Moreover, we found no significant

difference in performance between RankMotif and Seed-and-

Wobble, while we found that SVR models significantly outper-

formed RankMotif (Figure S3 in Text S1). Therefore, the main

conclusion of the previous RankMotif study – namely, that a

PSSM method can be competitive with a k-mer scoring derived

from simple statistics on the probe intensity data – is consistent

with our findings. However, we additionally find that supervised

discriminative models with SVRs strongly outperform both

PSSMs and k-mer scoring for the task of predicting in vitro TF

binding preferences.

SVR models improve in vivo occupancy prediction in
yeast

Next we used the SVR models trained on in vitro PBM data to

predict in vivo occupancy, as measured by chromatin immunopre-

cipation followed by microarray (ChIP-chip) experiments.

There are 68 yeast TFs for which PBM data and ChIP-chip

data are both available. For each TF, we first computed SVR

binding profiles along 6724 intergenic regions (IGRs), each 200–

2000 nucleotides in length, using a sliding 36-mer window for

scoring. Figure 3(a,b) shows predicted binding profiles for two

yeast TFs, Ume6 and Gal4, along IGRs that they occupy in vivo

using different methods: log-odds scores for PBM-derived PSSMs

(gold), maximal E-score over a fixed threshold of 0.35 (blue); E-

score based occupancy (black), corresponding to the median probe

intensity of PBM probes containing the highest-scoring 8-mer

pattern [9]; and SVR scores (green). For Ume6, all methods detect

this IGR among the top 200 predictions and seem to agree on the

location of the highest and second highest peak. For Gal4, the

SVR profile and the noisier E-score profiles seem to locate a

different binding peak than the PBM-derived PSSM, and only the

SVR method detects this IGR among the top 200 predictions.

While the ChIP-chip data cannot identify the true location(s) of the

binding sites, we do find increasing enrichment for conservation

with increasing SVR score (Figure S5 in Text S1), with even

moderate scoring peaks showing enrichment for conservation

relative to background.

We then compared the performance of SVR models with

previously published results based on the E-score occupancy

method of [9]. Following the previous analysis, when TF

occupancy data is available for more than one condition, we

aggregated the data by assigning each IGR the minimal ChIP-chip

p-value over conditions (with Bonferroni correction) to obtain as

comprehensive a list of true positive IGRs as possible. While [9]

used an ROC analysis relative to a fixed p-value cut-off of 0.001,

we found that AUCs for TFs with very few true positive IGRs

were not informative for either method. We instead computed the

detection of the top 200 IGRs by the top 200 predictions, where

the top 200 ‘‘bound’’ IGRs were determined by their p-value

ranking. For the SVR method, we ranked IGRs by the height of

their max peak, while for the E-score occupancy method, we used

the scores provided by the authors. Figure 3(c) shows a scatter plot

of the detection of the top 200 IGRs by SVR and E-score

occupancy.

Since chromatin state and interactions with other DNA-binding

factors influence in vivo occupancy, we do not expect a TF’s

sequence signal alone to perfectly correlate with the occupancy

data. In fact, similar to the results reported by [9], prediction of in

vivo occupancy is weak to very poor (fewer than 40 of the top 200

IGRs detected) by both methods for most TFs. However, for the

TFs with the best results by the E-score occupancy method (w40

top IGRs detected), the SVR method outperforms the previous

occupancy score method in 8 out of 9 cases, sometimes to a large

degree. [9] performed extensive motif analysis to give evidence

that indirect binding may account for a part of the TF occupancy

signal in yeast. We too hypothesized that interpreting TF

occupancy is confounded by indirect or competitive binding. We

performed a detailed analysis of potential interactions between

TFs and cooperative or competing partners (see Figure S6 in Text

S1), and we found for 26 out of the 68 yeast TFs, the TF’s in vivo

occupancy is well predicted by the SVR model of a second

potential ‘‘partner’’ TF (Figure S6 in Text S1).

As we did for the in vitro cross-validation experiments, we also

benchmarked SVR and E-score occupancy against PBM-derived

PSSMs from [9], where we scanned PSSMs across IGR sequences

and scored each IGR by its maximum log odds score. Again, we

evaluated performance by counting the detection of the top 200

IGRs based in the top 200 predictions, and we found that for the 9

well-predicted TFs, the SVR model outperforms PSSMs (6 wins, 1

ties, 2 losses) while the E-score occupancy performs worse than

PSSMs for 5 of these 9 TFs (Figure S7 in Text S1).

SVR models improve genomic occupancy prediction in
mammalian genomes

We next evaluated the performance of PBM-derived SVR

models for the prediction of TF occupancy in mouse and human

genomes. We examined seven ChIP-seq experiments conducted in

three different cell types: Oct4, Sox2, Klf4, and Esrrb in E14

mouse ES cells [14]; Srf and Gabpa in GM12878 cells (human

EBV-transformed B-lymphocytes) [15]; and Hnf4a in HepG2 cells

[16]. For TFs whose binding domain is not present in the

UniPROBE PBM database, we used the most similar binding

domain(s) with available PBM data: Pou2f3 and Pou2f1

substituting for Oct4; Sox12 and Sox21 for Sox2; Klf7 for Klf4;

and Esrra for Esrrb. Both Pou2f3 and Pou2f1 differ from Oct4 by

just one residue in their DNA-contact residues, based on

homeodomain-DNA contacts determined from the 3D structure

for Engrailed [17,18]. Sox2 best aligns with Sox21, but we include

Sox12 as well to assess the variability of PBM-derived models for

TF domains that are thought to bind similar motifs.

We computed the SVR models by carefully selecting the

parameters (k, m)1 using cross-validation experiments on PBM

array data (see Text S1). For our test data, we selected a set of

1000 confident ChIP-seq peak regions and 1000 ‘‘negative’’

regions selected from flanking sequences. More specifically, we

extracted 60bp regions centered around the peaks (positive

examples) and 60bp regions 300bp away from the peaks (negative

examples). Model performance was measured by the area under

the ROC curve (AUC), using the maximum SVR prediction score

(over 36-mer windows) to rank the ChIP-seq 60-mers. We

compared our SVR models to the occupancy score derived from

E-scores [9]. We also compared to PSSMs extracted from PBM

data with the Seed-and-Wobble algorithm [3,10], which are

available for download from UniPROBE [11].

Figure 4(a) shows AUC results for all three methods; here, in

cases where UniPROBE reports both primary and secondary

PSSMs, we show results for the primary motif. We found that

SVR outperforms both the PSSM and occupancy score methods

Modeling Transcription Factor-DNA Affinities
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Figure 3. SVRs improve in vivo occupancy prediction in yeast. Predicted binding profiles for (a) yeast TF Ume6 along IGR iYFL022C and (b)
yeast TF Gal4 along IGR iYFR026C using log-odds ratios for the PBM-derived PSSM motif (gold); max E-score, considering only 8-mer patterns
satisfying a minimal E-score threshold of 0.35 (blue); E-score based occupancy, plotting median probe intensity for 8-mer patterns with maximal E-
score (black); and SVR prediction scores (green). (c) Scatter plots showing occupancy score predictions (x-axis) versus SVR (y-axis) for yeast in vivo
binding preferences as measured by detection of the top 200 IGRs by the top 200 predictions.
doi:10.1371/journal.pcbi.1000916.g003
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in 7 out of 9 cases, where we report results for models trained on

two different PBM experiments to predict Oct4 and Sox2

occupancy. There were two TFs, Sox21 and Hnf4a, for which

the secondary PSSM outperformed the primary PSSM. However,

in each case, the improved AUC (0.75 and 0.70, respectively) was

still worse than the performance of the PBM-derived SVR.

We report two SVR results for Hnf4a, one using the mouse

PBM array data present in the UniPROBE database (Figure 4(a),

Hnf4a, leftmost bar), the other using a novel PBM array design

developed specifically for human Hnf4a and using the purified full-

length protein instead of the DNA-binding domain in the PBM

experiment [19]. In the latter dataset, short probe sequences were

designed based on known motifs for Hnf4a (see Figure S8 in Text

S1 for contrasting binding profiles of the standard versus custom

PBM array). [19] published two such PBM array designs and, by

combining data from the two arrays and modifying our algorithm

to accommodate the 13-mers that comprise this PBM data, we

were able to train an SVR model that gave the best predictions of

Hnf4a in vivo binding (Figure 4(a), Hnf4a, rightmost bar).

Training discriminative models directly on ChIP-seq data
improves occupancy prediction

Since PBM arrays are limited to capturing the in vitro binding

preferences of transcription factor domains, we hypothesized that

additional sequence signals may be present in ChIP-seq data and

enable improved prediction performance. We therefore trained

support vector machines (SVMs) using the standard

(k, m)1~(13, 5) parameters on 60-mer ChIP-seq peaks (positive

sequences) and flanking negative sequences. This training

procedure potentially allows the SVM to capture sequence

information for both the chromatin immunoprecipitated TF and

its cis cofactors. We evaluated performance by computing AUCs

on the same test sets of 1000 ChIP-seq peaks and 1000 flanking

negative sequences using 10-fold cross-validation.

For a method comparison, we used two popular motif discovery

algorithms, Weeder [7] and MDscan [8], which determine

overrepresented k-mer and PSSM motifs, respectively. Again,

we tested these methods using 10-fold cross-validation and

evaluating AUCs on held-out folds.

Weeder performs an exhaustive search for the most overrep-

resented k-mer patterns for a given specified size k. We used the

algorithm to find the top 50 enriched motifs in the training data,

allowing up to one mismatch. To make predictions, we counted

the occurrences of these motifs in the test sequences, again

allowing up to one mismatch, and used this count to rank the test

sequences. We tested k-mer lengths 6, 8 and 10, and reported

results for the best performing model. MDscan identifies

overrepresented motifs by iteratively constructing PSSMs and

using binding site flanking regions to define a Markov chain

background model. We applied the highest scoring PSSM as

found by MDscan to the test sequences, using a zero order Markov

model based on nucleotide frequencies in the human genome as

the background model. (We did not use a first order Markov

background model since we found it slightly decreased PSSM

performance for all but one TF.) We experimented with motif

lengths of 8, 10 12, 14 and 16 and reported the best results.

Figure 4(b) shows results for ChIP-derived SVM models and the

motif discovery approaches for the occupancy prediction task. We

Figure 4. Predicting TF occupancy in mouse and human genomes as evaluated on ChIP-seq data. (a) SVRs trained on PBM arrays are able
to capture ChIP-seq peaks better than PSSMs or the occupancy score. (b) SVMs trained on ChIP-seq data capture sequence information from the
genomic context of ChIP-seq peaks and improve in vivo prediction performance.
doi:10.1371/journal.pcbi.1000916.g004
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first note that for 4 out of 6 TFs, the ChIP-derived SVM model

significantly outperforms the corresponding PBM-derived SVR

model(s). The exceptions are Essrb and Gabpa, where there is little

difference in performance between the in vitro and in vivo models.

Furthermore, although Weeder and MDscan yielded predictions

with AUCs above 0.65 for all 7 TFs, the SVM model

outperformed both methods in every case that we considered

(Figure 4(b)), sometimes by more than 0.1 in the AUC score. It is

also worth noting that while Weeder and MDscan required

parameter tuning, the SVM model parameters were kept fixed. As

a final method comparison, we also tested a newer motif discovery

algorithm called cERMIT [20] on these data sets, and we again

found that the SVM models outperformed the best-performing

PSSM returned by cERMIT (Figure S11 in Text S1).

We caution that our sample set of TFs is small: although we did

a thorough search for all available ChIP-seq data sets, we found

only a small number of TFs with both PBM and ChIP-seq data;

moreover, in some cases, the TF domain represented in the PBM

experiment is slightly different than in the TF ChIP-seq

experiment. It will therefore be important to repeat these

experiments on a wider range of TFs once suitable data becomes

available.

Finally, we evaluated whether there was any advantage to

training regression models on ChIP-seq peaks labeled with real-

valued occupancy rather that binary classifiers to discriminate

between peaks/non-peaks. We found that SVR models trained

with real-valued labels gave slightly worse performance in our

AUC analysis as compared to SVM models (see Figure S11 in

Text S1). We hypothesize that either (i) the currently available

ChIP-seq derived occupancy scores are not yet quantitative

enough to use to train a regression model or (ii) the best predictor

of peak height/occupancy score is not the sequence signal itself but

chromatin state (accessibility of the DNA, nucleosome positioning,

histone modifications).

PBM experiments may capture alternate motifs that are
not preferred in vivo

To understand the differences between in vitro and in vivo TF

binding models, we developed an approach to examine the

sequence information extracted by the SVR/SVM models. It is of

course possible to simply examine the top-weighted k-mers in the

SVR/SVM weight vectors; for example, the 13-mers with highest

positive weights in the PBM-derived SVR models often contain

subsequences that resemble the Seed-and-Wobble motifs derived

from the same data (Tables S2 and S3 in Text S1). We sought

instead to visualize the full k-mer content of the model. We first

looked at the in vitro models for Oct4, since the PBM-derived

PSSMs for the two selected ‘‘nearest neighbor’’ Pou domains had

very different performance, and we wanted to understand the

source of the instability.

We used a feature analysis procedure to look inside the ‘‘black

box’’ of the PBM-derived SVR model for Pou2f3, the neighbor of

Oct4 with the better performing PSSM. The solution of the SVR

optimization problem determines a weight vector w over the space

of 13-mer sequence features; 13-mers with high weights contribute

the most to high binding prediction scores. The basic idea is to

represent the similarity of k-mer features based on their support

across the training data and also visually represent the weight of

the features in the SVR/SVM model. In this way, we avoid doing

too much post hoc summarization of the k-mers, and instead we

represent the features more as they are used and contribute to the

model.

To obtain a similarity measure between these features, we

represented each 13-mer by the vector of its alignment scores to

the training sequences (see Materials and Methods). Intuitively,

13-mers that are close in Hamming distance will be represented by

nearby vectors in this representation. After clustering 13-mer

features based on this vector representation and projecting to a

two-dimensional representation (see Materials and Methods), we

identified two clusters of features, shown in Figure 5(a) using stars

and circles. The color scheme indicates the SVR weight associated

with the 13-mer feature, red for highly weighted features and blue

for low weights. The two well-separated clusters suggest that the

SVR is learning a primary and secondary motif, similar to results

of PSSM-based analysis [10]. We took a 13-mer feature near the

centroid of each cluster and expanded each into a PSSM by

aligning to the positive training sequences (see Materials and

Methods): the ‘‘star’’ cluster is represented by a motif that looks

like the canonical Oct4 octamer (ATGCAAAT), but the ‘‘circle’’

cluster is centered on a more degenerate (TAATT) motif. To

determine the in vivo prediction performance of each cluster

independently, we retrained SVR models using the star and circle

13-mer features separately and obtained dramatically different

AUCs of 0.75 and 0.54, respectively, on the Oct4 ChIP-seq data.

The poor in vivo performance of the star cluster of features suggests

that the PBM is learning a secondary motif that is not preferred in

vivo. The presence of these apparently PBM-specific features only

slightly degrades the performance of the full SVR model (AUC

of.74) but may seriously impact PSSM-based methods. For

example, the Seed-and-Wobble algorithm identifies a primary

motif similar to TAATTA for the other Oct4 nearest neighbor,

Pou2f1 (see Figure S10 in Text S1), which accounts for its poor

occupancy prediction. We reiterate the caveat that neither of these

Pou domains is in fact Oct4; it is conceivable that the differences

between PBM and ChIP binding preferences are due in part to

differences in these homeodomains.

ChIP-derived SVMs capture information about cofactor
motifs

We next performed a similar feature analysis of the ChIP-

derived model for Sox2, one of the examples where the in vivo

model strongly outperformed the in vitro model. Here, 13-mer

features from the SVM model are represented by their vector of

alignment scores relative to 60bp sequences under ChIP-seq peaks

rather than probe sequences.

Again, we identified two well-separated clusters, shown using

stars and circles in Figure 5(b). Here, the cluster representative for

the ‘‘star’’ cluster can be expanded to a PSSM that closely

resembles the Sox2 motif. However, the representative for the

‘‘circle’’ cluster maps to part of the Oct4 octamer motif, indicating

that the ChIP-derived model is learning binding information

about Sox2’s binding partner Oct4 (Figure 5(c)). We hypothesized

that this additional cis information may account for part of the

improvement of the in vivo model over the PBM-derived model. To

quantify this effect, we identified Sox2 bound regions that are not

detected by the PBM-trained SVR model but are correctly

detected by the ChIP-trained SVM (Figure S9(a) in Text S1).

These 33 60bp regions were 6-fold depleted for the core Sox2

motif TTGT and 3-fold enriched for the core Oct4 motif TGCA.

Moreover, 32 out of 33 of these regions were detected as positives

by the PBM-trained SVR for Oct4 (Text S1). These results suggest

that some binding of Sox2 may be indirect via binding of the

cofactor Oct4.

Discussion

We have presented a flexible new discriminative framework for

learning TF binding models from high resolution in vitro and in
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vivo data. In particular, we showed that SVR models using string

kernels outperform existing existing approaches like PSSMs and

E-scores for predicting in vitro TF binding preferences as

measured by PBM experiments, based on cross-validation

experiments across array designs. We also found that PBM-

derived SVR models improve in vivo occupancy prediction over

PBM-derived PSSMs and E-scores, in particular when ChIP-seq

(as opposed to lower resolution ChIP-chip) data is available for

validation. Furthermore, we saw that by training directly on

ChIP-seq, i.e. using ChIP-seq peaks to define positive genomic

training sequences and taking non-peak regions as negative

sequences, we can significantly improve over PBM-derived

models and outperform existing motif discovery methods. We

also described a feature analysis procedure for looking inside the

‘‘black box’’ of the trained SVR/SVM models to identify clusters

of sequence features that contribute to binding predictions.

Importantly, this analysis allowed us to confirm that ChIP-trained

SVM models were learning additional sequence signals corre-

sponding to cofactor binding sites.

PSSMs have a long history in the analysis of TF binding sites

and remain ubiquitous due to their interpretability. However, as

we continue to accumulate mammalian PBM data and ChIP-seq

data, the more general models that we develop here—i.e. models

that do not force a PSSM representation on binding sites and can

integrate in vivo sequence signals from both a TF and its

cofactors—may be more suitable for representing complex

regulatory regions. We anticipate a number of directions for

building on this work. First, we can develop strategies to train

jointly on PBM and ChIP-seq data for the same TF in order to

cleanly disambiguate between direct and indirect binding. Second,

as more PBM data becomes available, we can develop multi-task

training strategies for modeling the binding preferences of a class

Figure 5. Sequence feature analysis of in vitro and in vivo models. We plot k-mers contributing to the (a) Oct4 PBM model and (b) Sox2 ChIP
model, where each point represents a 13-mer and is colored according to its model weight (red for high weights, blue for low weights). Star and circle
point styles indicate different clusters. For the PBM-derived model, the clusters appear to represent primary and secondary binding motifs, with the
more degenerate motif perhaps arising as an artifact of the PBM experiment. For the ChIP-derived model, the clusters correspond to the motifs for
Sox2 and its cofactor Oct4. (c) PBM-derived PSSMs for Sox12 and Pou2f3, downloaded from UniPROBE, and ChIP-derived PSSM for Sox2, computed
using MDscan on the Sox2 ChIP-peak sequences (60bp long).
doi:10.1371/journal.pcbi.1000916.g005
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of structurally related TFs, using features of the amino acid

sequence as well as a k-mer representation of probe sequences.

Then, given a new TF for which PBM data is not available, the

model would extend to predict its binding preferences. Third, we

can combine our in vivo TF sequence preference models with data

on chromatin state, including histone modifications and DNase I

footprinting, using a kernel combination strategy. The goal would

be to predict TF target genes in new cell types, given only the

chromatin information in the cell type, after training on ChIP-seq

data paired with chromatin data in other cell types. Therefore, the

flexible sequence-based framework we describe here provides the

foundation for the systematic modeling of genome-wide TF

occupancy.

Materials and Methods

Overview of SVR training
We developed a training strategy for our SVR models that

involved three key components: (1) the choice of kernel, which

specifies the space of features used to compare pairs of probe

sequences; (2) the sampling procedure for selecting the training

sequences, which produces more informative training data and

reduces training time; (3) the feature selection method, which

eliminates unimportant features and further improves computa-

tional efficiency. Each component is described in more technical

detail below. We used the LIBSVM package for the computation

of SVR models, keeping the e parameter fixed at 0.1 for all

experiments.

The di-mismatch kernel
Training a kernel method like an SVR on sequence data

requires the use of some kind of string kernel, i.e. a similarity

measure between sequences that defines an inner product in a

corresponding feature space. Various k-mer based string kernels

have been proposed, including the (k, m) mismatch kernel [5],

where the feature representation for a sequence amounts to an

inexact-matching histogram of k-mer counts, allowing up to m
mismatches in each k-mer match (mvvk). Here, however, even

for small values of the mismatch parameter m, this kernel tends to

make the ‘‘mismatch’’ neighborhood of a given k-mer too large.

We therefore developed a novel first order Markov mismatch

kernel, called the di-mismatch kernel, that counts mismatching

dinucleotides and that inherently favors k-mers with consecutive

mismatches. Let fwigi~1...n be a set of unique k-mers that occur in

the set of training sequences (PBM probe sequences). Given a

training sequence s of length N, we define the set of substrings of

length k in s to be

fsj~s(j, jzk{1)gj~1...N{kz1:

Then s may be represented by the feature vector

(r(s, w1), . . . r(s, wn)),

where r(s, wi)~
PN{kz1

j~1 d(k, m)1
(wi, sj), and the value d(k, m)1

(wi, sj) is the di-mismatch score between two k-mers, which counts

the number of matching dinucleotides between wi and sj , that

number being set to zero if this count falls below the threshold

k{m{1, where m is the maximum number of mismatches

allowed.

This score inherently favors consecutive mismatches, as we

show in the following examples. Consider the first pair of 13-mers

shown with four non-consecutive mismatches, which results in 6

mismatching dinucleotides out of 12:

wi~ATCGCTGAGTCCA?

AT , TC, CG, GC, CT , TG, GA, AG, GT , TC, CC, CA½ �

sj~ATAACTCCGTCCA?

AT , TA, AA, AC, CT , TC, CC, CG, GT , TC, CC, CA½ �

In contrast, the following pair of 13-mers with four consecutive

mismatches leads to a count of 5 mismatching dinucleotides.

wi~ATCGCTGAGTCCA?

AT , TC, CG, GC, CT , TG, GA, AG, GT , TC, CC, CA½ �

sj~ATCGAACCGTCCA?

AT , TC, CG, GA, AA, AC, CC, CG, GT , TC, CC, CA½ �

By enforcing a mismatch parameter of m, we induce sparsity in

the feature counts and seem to obtain more meaningful

‘‘neighborhoods’’ of the features wi than the standard mismatch

kernel. This procedure appeared to capture the full dynamic range

of effective binding while downsampling the large number of

unbound probes.

Since the PBM arrays are designed to give good coverage of 8-

mer patterns (including gapped patterns), we chose (k, m)1

parameters that would require at least 8 matching characters

between the k-mers. Our parameter experiments on one set of

yeast PBM arrays [9] indicated (k, m)1~(13, 5) to be the best

parameter setting, and we used this kernel choice for the in vitro

evaluation for most of our reported results. However, one may use

a 10-fold cross-validation approach on the training PBM array to

perform a grid-search and thereby optimize the choice of the

(k, m) parameters. We used such a strategy for the 7 mammalian

in vivo occupancy predictions (Figure 4), whereby we tested (k, m)1

parameters ranging from k~8 . . . 13 and m~1 . . . 6 where

k{mw6.

Much like the mismatch kernel, the computational cost of

scoring test sequences with the trained di-mismatch SVM/SVR

model is linear with respect to the input sequence length. Every k-

mer has a non-zero match score to a fixed number of features, and

each feature is represented by a weight in the support vector

model. Therefore, the contribution of each k-mer can be pre-

computed, and those with non-zero contribution can be stored in a

hash table.

Sampling PBM data to obtain an informative training set
Standard PBM arrays typically contain *44K probes, each

associated with a binding intensity score, but only few hundred

probes indicate some level of TF binding. Using all of the PBM

probes as training data would allow the SVR to achieve good

training loss simply by learning that most probes have low binding

scores. In order to learn sequence information associated with the

bound probes, we selected training sequences from the tails of the

distribution of the normalized binding intensities. More specifi-

cally, we selected the set of ‘‘positive’’ training probes to be those

sequences associated with normalized binding intensities Z§3:5;

if the number of such probes was less than 500, we selected the top
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500 probes ranked by their binding signals. The same number of

‘‘negative’’ training probes was selected from the other end of the

distribution. This procedure appeared to capture the full dynamic

range of effective binding for learning the regression model while

downsampling the large number of unbound probes. We also tried

sampling ‘‘negative’’ probes from the full intensity distribution

(anywhere outside the positive tail), but we found that using the

negative tail yielded better results.

Feature selection
Careful feature selection can eliminate noisy features and of

course reduces computational costs, both in the training and

testing of the model. In particular, choosing very infrequent k-

mers may add noise, and ideally, sequence features should display

a preference either for bound or unbound probes. Therefore, we

selected the feature set fwig to be those k-mers that are over-

represented either in the ‘‘positive’’ or ‘‘negative’’ probe class by

computing the mean di-mismatch score for each k-mer in each

class and ranking features by the difference between these means.

In all reported results, we used at most 4000 k-mers for our

models.

ChIP-seq processing
We processed the ChIP-seq data using the SPP package [21]

and extracted the top 1000 peaks to define a gold standard for

occupancy. A 60bp window was selected around each of the peaks

and used as the positive examples. A 60bp window 300bp to the

left of the peak was selected as the negative example.

Extracting features from SVR/SVM models
It is informative to be able to use the SVM model to visualize

the k-mers that contribute to the model. Here our goal is to

visually represent both (i) the similarity of k-mer features based on

their support across the training data representing and (ii) the

contribution (or weight) of these k-mers to the model.

To obtain a similarity measure between k-mer features

extracted from the trained models, we represented each k-mer

by a vector of alignment scores against the positive training

sequences used to compute the SVR model: we found the optimal

ungapped alignment of the k-mer to each training sequence and

used the number of match positions as the alignment score.

Intuitively, sequence-similar k-mers will have similar alignment

scores across the training examples, so they will be represented by

nearby vectors in this representation. However, we are not

explicitly modeling sequence dependence but instead relying on

co-occurrence of matches of similar k-mers. We then performed

K-means clustering (K = 2) on the vectors representing the 13-mer

features. Next we used the SVM/SVR weight vector w, derived

from the solution to the optimization problem, to select the top

500 representatives for each cluster, thereby reducing the rest of

our analysis to k-mers that contributed significantly to the model.

Next, we projected the 1000 k-mers to a two-dimensional

representation using principal component analysis (PCA), distin-

guishing cluster members with circles and stars in the plot. The

relative significance of each feature is indicated by a color scale

ranging from red to blue, for high and low w respectively.

Finally, we defined a cluster representative for each group by

the feature that has the following two properties: (i) it is in the top

quartile of the w weights for that cluster, and (ii) it is the closest

feature to the cluster centroid. This gives us a cluster represen-

tative that is simultaneously close to the true cluster centroid and

significant for the model. Finally, to represent a given k-mer

feature by a motif logo, we selected the top 50 positive training

sequences that best aligned with the k-mer, extracted the k-length

sequences that matched the feature, and computed a PSSM.

Supporting Information

Text S1 High resolution models of transcription factor-DNA

affinities improve in vitro and in vivo binding predictions:

Supplementary information.

Found at: doi:10.1371/journal.pcbi.1000916.s001 (1.13 MB PDF)
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